航空 发表于 2010-7-25 16:12:01

操作限制 operating limitation

<P>操作限制 operating limitation</P>
<P>**** Hidden Message *****</P>

航空 发表于 2010-7-25 16:12:16

A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>• Table of contents<BR>• Flight operations duties<BR>• European Applicable Regulation<BR>• General<BR>• General aircraft limitations<BR>• Payload Range<BR>• Operating limitations<BR>• In flight performance<BR>• One engine inoperative performance<BR>• Flight planning<BR>• weight and balance<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off limitations<BR>2 - Landing limitations<BR>Table of contents<BR>1 - Take-off limitations<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>1 - Take-off speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> General principle :<BR>The most critical engine failure must be taken into<BR>account to insure take off.<BR>= engine whose failure has the<BR>most critical consequences<BR>on the control of the aircraft<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> In case of engine failure during take off:<BR>Abort take off<BR>2 possibilities<BR>Take off with one engine inop<BR>In any case,<BR>the chosen manoeoeuvre must be done<BR>with safety margin<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The aim of take off :<BR> Provide lift to overcome weight<BR>weight<BR>1/2 lift 1/2 lift L = &frac12;  Va<BR>2 S CL<BR>- Speed is necessary<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The speeds used for take off are :<BR>INDICATED AIRSPEEDS (IAS)<BR>Limiting speeds Operating speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Limiting speeds : (FAR-JAR § 25.107)<BR>VSR (VS1g) : stall speed<BR>VMCG : minimum control speed on the ground<BR>VMCA : minimum control speed in flight (airborne)<BR>VMU : minimum unstick speed<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> VMU : definition -(FAR-JAR § 25.107)<BR>too important pitch angle : the rear of the aircraft<BR>can hit the ground<BR>is the lowest airspeed at and above which the aircraft can<BR>safely lift off the ground, and continue the take off<BR>without encountering critical conditions<BR>insufficient lateral control : the wing tip or the<BR>engine can hit the ground<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>VMU (AEO)  VMU (OEI)<BR> VMU : determination<BR>W<BR>FN<BR>L<BR><BR>AEO<BR>W<BR>L<BR><BR>FN<BR>OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The speeds used for take off are :<BR>INDICATED AIRSPEEDS (IAS)<BR>Limiting speeds Operating speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 Decision Speed<BR> VR Rotation Speed<BR> VLOF Lift Off Speed<BR> V2 Take Off Climb Speed<BR>V1 VR VLOF<BR>V2<BR>35 ft<BR>BR<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Take off decision speed chosen by the applicant :<BR>BR V1 VR VLOF<BR>V2<BR>35 ft<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>Maximum speed at which it is possible<BR>to interrupt the take off in case of failure<BR>and also<BR>Minimum speed at which it is possible to<BR>follow on the take off in case of failure<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Take off decision speed chosen by the applicant:<BR>BR V1 VR VLOF<BR>V2<BR>35 ft<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>V V1 Speed<BR>If I am aware of a failure before V1<BR>I can<BR>... safely abort take off<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Take off decision speed chosen by the applicant:<BR>BR V1 VR VLOF<BR>V2<BR>35 ft<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>V1 V Speed<BR>If I am aware of a failure after V1<BR>I MUST follow on take off with OEI :<BR>35 ft<BR>from that point, I am<BR>sure to reach 35ft<BR>before the end of the<BR>take-off distance available<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Take off decision speed chosen by the applicant:<BR>BR V1 VR VLOF<BR>V2<BR>35 ft<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>V1 V Speed<BR>If I am aware of a failure after V1<BR>I MUST follow on take off with OEI :<BR>I am too fast to brake<BR>safely before the end<BR>of the accelerate-stop<BR>distance available<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Summary : In Operations,<BR>if the pilot is aware of a failure :<BR> V1 : Take off decision speed chosen by the applicant:<BR>V1<BR>stop continue<BR>before V1 after V1<BR>BR V1 VR VLOF<BR>V2<BR>35 ft<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 definition for flight tests<BR>VEF : Engine Failure speed<BR>During flight tests, the critical engine is made<BR>inoperative at VEF<BR>VEF  VMCG : the aircraft must remain under<BR>control to follow on the take off<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 definition for flight tests<BR>VEF : Engine Failure speed<BR>During flight tests, the critical engine is made<BR>inoperative at VEF<BR>V1 = VEF+ speed gained during the time necessary to<BR>recognize the failure and react to it<BR>Actual VEF V1<BR>engine failure<BR>Failure recognized<BR>Pilot ready to act<BR>About 1 s.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : limits<BR>VMCG VEF V1<BR>VMBE<BR>VR<BR>VMBE : Maximum Brake Energy Speed<BR>(maximum speed for full braking to a complete stop)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Decision Speed<BR> VR : Rotation Speed : the pilot pulls the stick to set<BR>the take off attitude<BR>V1 VR VLOF<BR>V2<BR>35 ft<BR>BR<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> VR : limits<BR>VR may not be less than<BR>V1<BR>1.05 VMCA<BR>the speed that allows reaching V2 before reaching a<BR>height of 35 ft<BR>a speed that, if the aeroplane is rotated at its<BR>maximum practicable rate, will result in a satisfying<BR>VLOF<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Decision speed<BR> VR : Rotation speed<BR> VLOF : Lift off speed : at which the aircraft first<BR>becomes airborne<BR>V1 VR VLOF<BR>V2<BR>35 ft<BR>BR<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> VLOF : limits<BR>when lift off is limited by the<BR>geometry of the aeroplane, or by<BR>elevator power, the margins may be<BR>reduced to 1.08 and 1.04<BR>may not be less than<BR>1.10 VMU (AEO)<BR>1.05 VMU (OEI)<BR>may not be higher than<BR>VTIRE<BR>= maximum speed for tires resistance<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V1 : Decision Speed<BR> VR : Rotation Speed<BR> VLOF : Lift Off Speed<BR> V2 : Take off climb Speed : V2 must be reached at<BR>least at 35 ft height<BR>V1 VR VLOF<BR>V2<BR>35 ft<BR>BR<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> OEI Take off :<BR> V2 must be maintained<BR>until reaching the<BR>acceleration height<BR>(400 ft minimum)<BR> AEO Take off :<BR> the climb speed is 10 to<BR>15 kt higher than V2<BR> V2 :<BR>must be reached at least at 35 ft above TO surface<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> V2 : limit<BR>is the greater of<BR>1.2 VS or 1.13 VS1g<BR>(before oct 2000)<BR>1.1 VMCA<BR>V2  V2min<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SUMMARY<BR>V1<BR>VR<BR>VLOF<BR>V2<BR>35 ft<BR>VMCG VEF VMBE<BR>1.05 VMCA<BR>1.10 VMU(AEO)<BR>1.05 VMU(OEI) VTIRE<BR>1.2 VS<BR>1.1 VMCA<BR>V1 VR V2<BR>on the take off card<BR>TAKE OFF SPEEDS (FAR-JAR §<BR>25.107)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Distances relative to take off :<BR> TOR : Take Off Run (§ 25.113)<BR> TOD : Take Off Distance (§ 25.113)<BR> ASD : Accelerate Stop Distance (§ 25.109)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> All Engines Operating  One Engine Inoperative<BR>1.15 TORAEO TOROEI<BR>TOR is the greater of :<BR>35 ft<BR>BR VR VLOF<BR>V2<BR>TORAEO<BR>AEO<BR>TOR : Take-Off Run (FAR-JAR § 25.113)<BR>35 ft<BR>BR VR VLOF<BR>V2<BR>VEF V1<BR>TOROEI<BR>AEO OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TORA : Take Off Run Available (JAR OPS 1.480)<BR>&raquo; rectangular area of concrete or asphalt used for take<BR>off and landing<BR>Runway<BR>Runway<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TORA : Take Off Run Available<BR>TOR  TORA (JAR OPS 1.490)<BR>35 ft<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>TOD : Take Off Distance (FAR-JAR § 25.113)<BR>1.15 TODAEO TODOEI<BR>TOD is the greater of :<BR> All Engines Operating  One Engine Inoperative<BR>TODAEO<BR>35 ft<BR>BR VR VLOF<BR>AEO V2<BR>TODOEI<BR>35 ft<BR>BR VR VLOF<BR>V2<BR>VEF V1<BR>AEO OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TODA : Take off distance available (JAR OPS 1.480)<BR>Runway + Clearway<BR> Clearway :<BR>&raquo; rectangular area beyond the runway,<BR>&raquo; located on the same centerline,<BR>&raquo; not less than 500 ft wide,<BR>&raquo; not longer than 50 % runway length<BR>&raquo; with a maximum upward slope of 1.25 %<BR>&raquo; no obstacles, threshold lights excepted<BR>500<BR>ft<BR>max. &frac12; RWY<BR>Clearway<BR>Runway<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TODA : Take off distance available<BR>TOD  TODA (JAR OPS 1.490)<BR>35 ft<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>ASD : Accelerate Stop Distance (FAR-JAR § 25.109)<BR>ASDAEO ASDOEI<BR>ASD is the greater of :<BR> All Engines Operating  One Engine Inoperative<BR>BR<BR>ASDAEO<BR>V1 +2s at V1 V=0<BR>AEO Idle +<BR>Brakes<BR>BR<BR>ASDOEI<BR>VEF V1 +2s at V1 V=0<BR>AEO Idle +<BR>Brakes<BR>OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> ASDA : Accelerate Stop Distance Available<BR>(JAR OPS 1.480)<BR>Runway + Stopway<BR>Runway + Stopway<BR> Stopway :<BR>&raquo; rectangular area beyond the runway,<BR>&raquo; located on the same centreline,<BR>&raquo; at least as wide as the runway<BR>&raquo; usable for decelerating the aircraft in case of aborted take off<BR>Runway Stopway<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> ASDA : Accelerate Stop Distance Available<BR>ASD  ASDA (JAR OPS 1.490)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> SUMMARY :<BR>TOR  TORA<BR>TOD  TODA<BR>ASD  ASDA<BR>reported on airport<BR>chart by C.A.<BR>authorities<BR>TORA = runway length available<BR>TODA = runway length available + clearway if any<BR>ASDA = runway length available + stopway if any<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Influence of V1 on :<BR>D<BR>V1<BR>V1 min VR<BR>ASD<BR>TOD<BR>TOR<BR>given weight<BR>- Accelerate Stop Distance<BR>- Take Off Distance<BR>- Take Off Run<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>D<BR>V1<BR>V1 min VR<BR>ASD<BR>TOD<BR>TOR<BR>given weight<BR>Balanced distance<BR>ASD = TOD<BR>Basic V1<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>CWY<BR>D<BR>V1<BR>V1 min VR<BR>ASD<BR>TOD<BR>TOR<BR> for a given V1 :<BR>RWY<BR>SWY<BR>given weight<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A320/100<BR> Temperature = +15°C<BR> Sea level<BR> TOW = 65 t<BR> V2/VS1g = 1,20<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR>With V1/VR = 0.925<BR>RWY = 2000 m<BR>CWY = 230 m<BR>1700<BR>2000<BR>2300<BR>2600<BR>0.84 0.92 1 V1 / VR<BR>ASD<BR>TOD<BR>TOR<BR>TOW = 65 t<BR>D<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>BR<BR>35 ft<BR>TO distance TO flight path<BR>Take-off path<BR>VEF<BR>Critical<BR>engine<BR>is made<BR>inoperative<BR>AEO OEI<BR>V2<BR>minimum acceleration height = 400 ft<BR>End = the higher of : either<BR>- 1500 ft, or<BR>- the point where en-route configuration is achieved,<BR>with remaining engine(s) at MCT,<BR>and minimum climb gradient at green dot speed.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Generally, the take-off path is divided into<BR>segments :<BR>the segments relate to the distinct changes in the<BR>configuration, thrust and speed<BR>the weight, configuration and thrust must correspond to<BR>the most critical condition prevailing on the segment<BR>the flight path must be based on the aeroplane's<BR>performance without ground effect<BR>The aeroplane is considered to be<BR>out of the ground effect when it<BR>reaches a height equal to its<BR>wing span.<BR>A320 : 111 ft<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>BR VEF<BR>OEI<BR>Segments :<BR>AEO<BR>35 ft<BR>MAXI TAKE-OFF THRUST<BR>Take-Off<BR>gear<BR>retraction<BR>3s after<BR>Vlof<BR>1<BR>V2<BR>gear fully<BR>retracted<BR>Slats/Flaps<BR>TO position<BR>2<BR>min. 400 ft<BR>3 (acceleration)<BR>flaps<BR>retraction<BR>slats<BR>retraction<BR>(V&gt;1,25 Vs)<BR>Green dot<BR>final<BR>10 mn max<BR>after BR<BR>MCT<BR>1500 ft<BR>At least..!<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Minimum required climb gradient OEI<BR>(FAR-JAR § 25-121)<BR>The most limiting condition is often due to the 2nd segment<BR>Nb of engines 2 3 4<BR>1st segment &gt;0% 0.3% 0.5%<BR>2nd segment 2.4% 2.7% 3%<BR>final segment 1.2% 1.5% 1.7%<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters  Chosen parameters<BR>Zp and temperature<BR>Influence on engines<BR>and airspeed<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>15000<BR>16000<BR>17000<BR>18000<BR>19000<BR>20000<BR>21000<BR>22000<BR>23000<BR>-10 -5 0 5 10 15 20 25 30 35 40<BR>Zp = 0<BR>Zp = 2000<BR>Zp = 8000<BR>daN CF6-50A<BR>t°<BR>Flat rating<BR>temperature<BR>Maximum Take-off thrust<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> mg = L = &frac12;  S Va&sup2; CL<BR> Va   The take off distances<BR>increase<BR>  when Zp or T°C <BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Head: 50% of effect<BR> Chosen parameters<BR>Air Speed<BR>Ground Speed<BR>Wind<BR>TO Distances <BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Head: 50% of effect<BR> Tail: 150% of effect<BR> Chosen parameters<BR>Ground Speed<BR>Air Speed wind<BR>TO Distances <BR>Max : 10kt (actual)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Runway slope<BR> -2% &lt; slope &lt; +2%<BR> Chosen parameters<BR>slope &lt; 0  take-off distance <BR>± 2 %<BR>slope &gt; 0  take-off distance <BR>(downwards) (upwards)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Runway slope<BR> Runway condition<BR> Wet or equivalent<BR> Contaminated<BR>(see special chapter<BR>later)<BR> Chosen parameters<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Wet<BR>or<BR>equivalent<BR>contaminated<BR>- Water<BR>- Slush<BR>- Wet snow<BR>- Dry snow<BR>- Compacted<BR>snow<BR>&lt; 3mm<BR>&lt; 2mm<BR>&lt; 4mm<BR>&lt; 15mm<BR>3 to 13 mm<BR>2 to 13mm<BR>4 to 25mm<BR>15 to 51mm<BR>all thickness<BR>2 à 13mm<BR>Wet and contaminated runway<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Chosen parameters<BR> Flaps/Slats<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Runway slope<BR> Runway condition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>60<BR>65<BR>70<BR>75<BR>80<BR>85<BR>90<BR>0.84 0.92 1<BR>TORA 1+F<BR>TORA 2<BR>m(t)<BR>V1/VR<BR>Flaps/slats influence on “runway” limitation<BR>A320/200<BR> Temperature =<BR>+20°C<BR> Sea level<BR> Runway: 2300m<BR> SWY: 100m<BR> CWY: 0m<BR> V2/Vs1g = 1,21<BR> Slope = 0%<BR> Wind = 0<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>60<BR>65<BR>70<BR>75<BR>80<BR>85<BR>90<BR>0.84 0.92 1<BR>TORA 1+F<BR>TODA 1+F<BR>TODA 2<BR>TORA 2<BR>m(t)<BR>V1/VR<BR>Flaps/slats influence on “runway” limitation<BR>A320/200<BR> Temperature =<BR>+20°C<BR> Sea level<BR> Runway: 2300m<BR> SWY: 100m<BR> CWY: 0m<BR> V2/Vs1g = 1,21<BR> Slope = 0%<BR> Wind = 0<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>60<BR>65<BR>70<BR>75<BR>80<BR>85<BR>90<BR>0.84 0.92 1<BR>ASDA 1+F<BR>TORA 1+F<BR>TODA 1+F<BR>ASDA 2<BR>TODA 2<BR>TORA 2<BR>m(t)<BR>V1/VR<BR>73t5<BR>0.97<BR>Flaps/slats influence on “runway” limitation<BR>A320/200<BR> Temperature =<BR>+20°C<BR> Sea level<BR> Runway: 2300m<BR> SWY: 100m<BR> CWY: 0m<BR> V2/Vs1g = 1,21<BR> Slope = 0%<BR> Wind = 0<BR>1+F<BR>2<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>60<BR>65<BR>70<BR>75<BR>80<BR>85<BR>90<BR>0.84 0.88 0.92 0.96 1<BR>2 sgt 1+F<BR>2 sgt 2<BR>m(t)<BR>V1/VR<BR>Flaps/slats influence on “climb requirements” limitation<BR>A320/200<BR> Temperature =<BR>+20°C<BR> Sea level<BR> Runway: 2300m<BR> SWY: 100m<BR> CWY: 0m<BR> V2/Vs1g = 1,21<BR> Slope = 0%<BR> Wind = 0<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A320/200<BR> Temperature =<BR>+20°C<BR> Sea level<BR> Runway: 2300m<BR> SWY: 100m<BR> CWY: 0m<BR> V2/Vs1g = 1,21<BR> Slope = 0%<BR> Wind = 0<BR> Obstacle :<BR> Height = 260ft<BR> Distance =<BR>6450m<BR>60<BR>65<BR>70<BR>75<BR>80<BR>85<BR>90<BR>0.84 0.88 0.92 0.96 1<BR>2 sgt 1+F<BR>Obst. 1+F<BR>2 sgt 2<BR>Obst. 2<BR>m(t)<BR>V1/VR<BR>Flaps/slats influence on “climb requirements” limitation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Chosen parameters<BR> Flaps/Slats<BR> V1/Vr ratio<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Runway slope<BR> Runway condition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Chosen parameters<BR> Flaps/Slats<BR> V1/Vr ratio<BR> V2/VSR ratio<BR> Sustained parameters<BR> Zp and t°C<BR> Wind<BR> Runway slope<BR> Runway condition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>m(t)<BR>V2/Vs<BR>130<BR>140<BR>150<BR>160<BR>170<BR>1.2 1.25 1.3 1.35<BR>Runway<BR>2 Sgt<BR>Obstacles<BR>tires<BR>A 300-600<BR> Temperature =<BR>+30°C<BR> Pressure Altitude =<BR>5000ft<BR> Runway: 3000m<BR> Slope = 0%<BR> Flaps = 0°<BR> Wind = 0<BR> Close Obstacle<BR>V2/Vs influence: Take-off optimization<BR>1.23<BR>149t<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>V2min<BR>V2max<BR>35 ft<BR>V2/Vs influence : &laquo; Close obstacle &raquo;<BR>V2/VSR   2nd segment gradient <BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The lowest of :<BR> Maximum take off design (structural) weight<BR> Maximum take off weight due to performance<BR> Runway limitation<BR> Take off climb requirement limitation<BR>Obstacle limitation<BR> Tires limitation<BR> Brakes limitation<BR>MAXIMUM ALLOWED TAKE OFF WEIGHT (RTOW)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A 320/200<BR> Temperature =<BR>+20°C<BR> Sea Level<BR> RWY : 2300m<BR> SWY : 100m<BR> CWY : 0m<BR> V2/Vs1g = 1,21<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR>Runway limitation calculation<BR>60<BR>70<BR>80<BR>90<BR>0,84 0,92 1<BR>V1/VR<BR>m<BR>70,3 t<BR>0,974<BR>ASDA<BR>TODA<BR>TORA<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A 320/200<BR> Temperature =<BR>+20°C<BR> Sea Level<BR> RWY : 2300m<BR> SWY : 100m<BR> CWY : 300m<BR> V2/Vs1g = 1,21<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR>Runway limitation calculation<BR>V1/VR<BR>m<BR>60<BR>70<BR>80<BR>90<BR>0,84 0,92 1<BR>ASDA<BR>TODA<BR>TORA<BR>0,952<BR>72 t<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>BR Vef<BR>Segments 1 2 3 (acceleration)<BR>V2<BR>final<BR>Gross TO flight path<BR>1500 ft<BR>Gear<BR>retracted<BR>3s after<BR>Vlof<BR>Gear<BR>fully<BR>retracted<BR>Flaps<BR>T.O conf. 10 mn max<BR>after BR<BR>flaps<BR>retraction<BR>one engine inoperative<BR>Maxi<BR>Cont.<BR>All<BR>eng. Maxi Take off thrust<BR>Slats<BR>retraction<BR>Green dot<BR>Take-off “climb requirements” limitation calculation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Twinengined<BR>Threeengined<BR>Fourengined<BR>1st segment &gt; 0% 0.3% 0.5%<BR>2nd segment 2.4% 2.7% 3%<BR>final 1.2% 1.5% 1.7%<BR>Acceleration height  400ft<BR>Take-off “climb requirements” limitation calculation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>70<BR>75<BR>80<BR>85<BR>90<BR>95<BR>100<BR>105<BR>110<BR>0.84 0.88 0.92 0.96 1<BR>1 sgt<BR>2 sgt<BR>FTO<BR>m(t)<BR>V1/VR<BR> A 320/200<BR> Temperature = +20°C<BR> Sea Level<BR> RWY : 2300m<BR> SWY : 100m<BR> CWY : 0m<BR> V2/Vs1g = 1,21<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR>Take-off “climb requirements” limitation calculation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>D<BR>E/2<BR>b/2<BR>B/2<BR>35ft<BR>height<BR>planned<BR>flight path<BR>Start of departure<BR>sector = end of<BR>TODA<BR>Departure sector (obstacles limitations) - JAR OPS 1.495<BR>b/2 = 60m +&frac12; wing span  90 m<BR>E/2 = b/2 + 0.125 D  B/2<BR>“Obstacle” limitation calculation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> B/2 values<BR>Track change 15° Track change &gt;15°<BR>Other<BR>conditions<BR>300m 600m 600m 900m<BR>Navigation<BR>with accuracy<BR>Navigation<BR>with accuracy<BR>Other<BR>conditions<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>CCAR121.189<BR> Take the smaller(For turbo jet<BR>aircraft):<BR>1. E/2=90m+0.125D  B/2<BR>2. B/2 Value<BR>300m 600m 600m 900m<BR>VFR IFR VFR IFR<BR>Track Change  15 Track Change &gt; 15<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>FAR121.189<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Take off flight path (obstacles limitations) - JAR OPS 1.495<BR>LF Vef<BR>Segments 1 2 3 (acceleration)<BR>V2<BR>final<BR>Net TO flight path<BR>Gross TO flight path<BR>1500 ft<BR>Flaps<BR>T.O conf.<BR>flaps<BR>retraction<BR>one engine out<BR>Maxi<BR>Continu<BR>All<BR>eng. Maxi Take off thrust<BR>Slats<BR>retraction<BR>Net gradient = Gross gradient - gradient reduction<BR>Twin eng Three eng Four eng<BR>0.8% 0.9% 1%<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Take off flight path (obstacles limitations) - JAR OPS 1.495<BR>LF Vef<BR>Segments 1 2 3 (acceleration)<BR>V2<BR>final<BR>Net TO flight path<BR>Flaps Gross TO flight path<BR>T.O conf.<BR>flaps<BR>retraction<BR>one engine out<BR>Maxi<BR>Continu<BR>All<BR>eng. Maxi Take off thrust<BR>Slats<BR>retraction<BR>Obstacle envelope : 35 ft margin<BR>1500 ft<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> A 320/200<BR> Temperature = +20°C<BR> Sea Level<BR> RWY : 2300m<BR> SWY : 100m<BR> CWY : 0m<BR> V2/Vs1g = 1,21<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR> Obstacle<BR> Height = 260ft<BR> Distance = 6450m<BR>70<BR>75<BR>80<BR>85<BR>90<BR>95<BR>100<BR>105<BR>110<BR>0.84 0.88 0.92 0.96 1<BR>1 sgt<BR>2 sgt<BR>FTO<BR>Obstacles<BR>m(t)<BR>V1/VR<BR>Take off flight path (obstacles limitations) - JAR OPS 1.495<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Straight track after take off :<BR>RTOW: 67310 kg<BR> Acceleration height: 1150 ft<BR>minimum 2nd segment gradient: 4,6%<BR>Example : Take off - runway 14L - Marseille<BR>Take off data<BR>QNH = 993 hPa<BR>t°c = +25°C<BR>V2/Vs1g = 1,25<BR>Conf: 1+F<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Track change after take off<BR> no track change allowed before the greater of:<BR> 1/2 wing span<BR> 50 ft above the end of the TORA<BR> bank angle<BR>  15° up to 400 ft<BR> 15° bank angle  25° above 400 ft<BR> Safety margin<BR> 50 ft when the bank angle &gt; 15°<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Track change after take off<BR> Loss of net gradient<BR>0.6%<BR>15°<BR>Bank angle (°)<BR>Loss of<BR>gradient (%)<BR>1%<BR>10° 20°<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Turn after take off:<BR>RTOW: 69180 kg<BR> Acceleration height: 1300 ft<BR>minimum 2nd segment gradient: 4,25%<BR>Example : Take off - runway 14L - Marseille<BR>Take off data<BR>QNH = 993 hPa<BR>t°c = +25°C<BR>V2/Vs1g = 1,25<BR>Conf: 1+F<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>VLOF  VTIRES<BR>A320 : maxi tires speed = 195,5kt<BR>VLOFmax  Lmax  mgmax<BR>“Tyres” limitation<BR>V1  VMBE<BR>“Brakes” limitation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>70<BR>80<BR>90<BR>100<BR>110<BR>120<BR>130<BR>0.84 0.88 0.92 0.96 1<BR>Tires<BR>Brakes<BR>m(t)<BR>V1/VR<BR> A 320/200<BR> Temperature =<BR>+20°C<BR> Sea Level<BR> RWY : 2300m<BR> SWY : 100m<BR> CWY : 0m<BR> V2/Vs1g = 1,21<BR> No rwy slope<BR> No wind<BR> S/F = 1+F<BR> Obstacle<BR> Height = 260ft<BR> Distance = 6450m<BR>“Tires and Brakes” limitations<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Definition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Definition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Definition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Wet<BR>or<BR>equivalent<BR>contaminated<BR>- Water<BR>- Slush<BR>- Dry snow<BR>- Wet snow<BR>- Compacted<BR>snow<BR>- Ice<BR>&lt; 3 mm<BR>&lt; 2 mm<BR>&lt; 4 mm<BR>&lt; 15 mm<BR>3 to 13 mm<BR>2 to 13 mm<BR>4 to 25 mm<BR>15 to 51 mm<BR>All thickness<BR>All thickness<BR>2 à 13mm<BR>Wet and contaminated runway<BR>Definition<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>The take off distance, with one engine inoperative,<BR>on wet or contaminated runway ends when the<BR>aircraft reaches 15 ft above the runway surface<BR>Wet and contaminated runway (JAR 25.113 Subpart B)<BR>regulation<BR>V1 VR VLOF V2<BR>15 ft<BR>BR<BR>Vef<BR>AEO OEI<BR>TOD OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>The take off run, with one engine inoperative,<BR>on wet or contaminated runway is equal to TODOEI<BR>Wet and contaminated runway (JAR 25.113 Subpart B)<BR>Regulation<BR>V1 VR VLOF V2<BR>15 ft<BR>BR<BR>Vef<BR>AEO OEI<BR>TOR OEI<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> VMCG: (only for contaminated runway)<BR>VMCG(Contaminated) = VMCG(dry) + 4 kt<BR>Wet and contaminated runway<BR>regulation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>V1/VR<BR>D<BR>1<BR>TOD OEI Wet<BR>TOD OEI dry<BR>ASD dry<BR>ASD wet<BR>wet dry<BR>Balanced<BR>distance<BR>Wet and contaminated runway<BR>Regulation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>net flight path<BR>35 ft<BR>end of TODwet<BR>15 ft<BR>35 ft<BR>reduced safety<BR>margin<BR>Wet and contaminated runway (IEM JAR OPS 1.495(a)-2)<BR>regulation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>IEM OPS 1.495(a)<BR>Take-off obstacle clearance<BR> JAR-OPS 1.495(a) specifies that the net take-off<BR>flight path, determined from the data provided in<BR>the Aeroplane Flight Manual in accordance with<BR>sub-paragraphs 1(a) and 1(b) above, must clear<BR>all relevent obstacles by a vertical distance of<BR>35ft. When taking off on wet or contaminated<BR>runway and an engine failure occurs at the point<BR>corresponding to the decision speed (V1)for a wet<BR>or contaminated runway,this implies that the<BR>aeroplane can initially be as much as 20ft below<BR>the net take-off flight path in accordance with<BR>sub-paragraph 1 above and,therefore, may clear<BR>close-in obstacles by only 15 ft.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>IEM OPS 1.495(a)<BR>Take-off obstacle clearance<BR> When taking off on wet or contaminated runways,<BR>the operator should exercise special care with<BR>respect to obstacle assessment ,especially if a<BR>take-off is obstacle limited and obstacle density<BR>is high.<BR> IEM-Interpretative/Explanatory Material (IEM)<BR>helps to illustrate the meaning of a requirement.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR>1. There is a clear separation in the effect of<BR>contaminants on the aircraft performance in hard and<BR>fluid contaminants<BR> Hard contaminants are : Compacted snow and ice<BR> Fluid contaminants are : Water, slush and loose snow<BR>2. Hard: Decrease of friction forces<BR>3. Fluid: Decrease of friction forces + precipitation<BR>drag and aquaplaning<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR>1. The precipitation drag is composed of :<BR> Displacement drag<BR> produced by the displacement of the contaminant fluid from<BR>the path of the tire.<BR> Spray impingement drag<BR> produced by the spray thrown up by the wheels (mainly<BR>those of the nose gear) onto the fuselage<BR>2. The effect of these additional drags must be<BR>accounted for:<BR>They affect the deceleration performance: positive effect.<BR>They affect the acceleration performance: negative effect.<BR>3. The effect on the acceleration leads to a limitation in<BR>the depth of fluid contaminants on the runway<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR> Aquaplaning<BR> an intervening film between the tire and the runway<BR>leading to a reduction of the dry contact area<BR> the tire of the aircraft are to a large extend separated<BR>from the runway surface<BR> Friction forces drop to almost negligible values<BR> Directional control and braking are virtually ineffective.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR>All Engine Acceleration Capability<BR>- 130 Knots<BR>6 mm of slush -- 10-20 % reduction in all engine acceleration<BR>13 mm of slush -- 20-40 % reduction in all engine acceleration<BR>All engine<BR>acceleration<BR>Kt/sec<BR>Dry<BR>6 mm<BR>13 mm<BR>747 767 757 737<BR>Dry<BR>6 mm<BR>13 mm<BR>Dry<BR>6 mm<BR>13 mm<BR>Dry<BR>6 mm<BR>13 mm<BR>4.0<BR>3.0<BR>2.0<BR>1.0<BR>0.0<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR>Engine Out Acceleration Capability<BR>-- 130 Knots<BR>6 mm of slush -- 15-50 % reduction in engine out acceleration<BR>13 mm of slush -- 30-110 % reduction in engine out acceleration<BR>747<BR>0.0<BR>1.0<BR>2.0<BR>3.0<BR>4.0<BR>6 mm<BR>1/4"<BR>1/4"<BR>1/2"<BR>13 mm<BR>1/2"<BR>Dry all<BR>engine<BR>-0.5<BR>OEI<BR>DRY<BR>767 757 737<BR>6 mm<BR>13 mm<BR>OEI<BR>DRY<BR>6 mm<BR>13 mm<BR>OEI<BR>DRY<BR>6 mm<BR>13 mm<BR>OEI<BR>DRY<BR>Dry all<BR>engine<BR>acceleration<BR>Kt/sec<BR>Dry all<BR>engine Dry all<BR>engine<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Composition and Effect<BR>One Engine Inoperative Deceleration Capability 1<BR>30 Knots<BR>Deceleration<BR>Kt/sec<BR>Dry<BR>6 mm<BR>1/2"<BR>13 mm<BR>Dry<BR>6 mm<BR>13 mm<BR>Dry<BR>6 mm<BR>13 mm<BR>Dry<BR>6 mm<BR>13 mm<BR>8.0<BR>6.0<BR>4.0<BR>2.0<BR>0.0<BR>747 767 757 737<BR> Dry - AFM performance - includes maximum braking, spoilers,<BR>idle thrust<BR> Slush - includes wheel braking, spoilers, reverse thrust,<BR>and slush drag<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off speeds<BR>2 - Take-off distances and lengths available<BR>3 - Take-off flight path<BR>4 - Take-off data influence<BR>5 - Maximum allowed take-off weight calculation<BR>6 - Wet and contaminated runway<BR>7 - Flexible take-off and Derated take-off<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>:<BR>Reduction of<BR>Probability of<BR>failure<BR>Maintenance<BR>Costs<BR>Operating<BR>Costs<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Flexible temperature:<BR>The temperature at which<BR>the maximum take off thrust<BR>would allow to take off at no<BR>more than the actual TOW.<BR>Flexible take-off : Principle<BR>Actual<BR>temp<BR>Flexible<BR>temp<BR>m<BR>temperature<BR>RTOW<BR>2nd sgt<BR>MTOW<BR>Runway<BR>actual<BR>TOW<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Instead of setting the<BR> take-off thrust corresponding<BR>to the actual temp,<BR> the thrust is reduced to a value<BR>equal to the take off thrust<BR>corresponding to the flexible<BR>temp<BR>Actual<BR>temp<BR>Flexible<BR>temp<BR>m<BR>Thrust  75% take off<BR>thrust (actual t°c)<BR>temperature<BR>RTOW<BR>2nd sgt<BR>MTOW<BR>Runway<BR>actual<BR>TOW<BR>Flexible take-off: Principle<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Thrust reductioncannot exceed 25%<BR>Tflex &gt; Tref;Tflex &gt; OAT;Tflex  Tflex.max<BR>Take-off is forbidden on a contaminated runway<BR>The thrust of takeoff is not considered as a takeoff operating limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Flexible take off: Operating conditions<BR> is not authorized:<BR> on contaminated runway<BR> on wet runway (unless you could take in account the<BR>increasing of stop distance).<BR> where items affecting performance involves<BR>significant increase in crew workload (Ex: inoperative<BR>equipment, reversers..).<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>engine<BR>engine engine<BR>engine<BR>engine<BR>Certified Certified Certified Certified Certified<BR>Reduced takeoff thrust<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>For the A340-500/600, two<BR>new derate levels have been<BR>added: 32% and 40%<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Which one shall be favored?<BR>1. Derated thrust;<BR>2. Flexible thrust.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Flexible takeoff<BR>1. Standard way to reduce<BR>takeoff thrust<BR>2. Only one takeoff chart<BR>3. Posibility to go TOGA<BR>4. More safety margins<BR> Not allowed on<BR>contaminated runways<BR> Derated takeoff<BR>1. Allowed on contaminated<BR>runways<BR>2. Increase takeoff Weight on<BR>short and contaminated<BR>runways<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Take-off limitations<BR>2 - Landing limitations<BR>Table of contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>1 - Minimum speed<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Minimum control speed during landing approach<BR>: VMCL (FAR-JAR § 25.149)<BR>With the aeroplane in the most critical configuration for<BR>approach and landing, it is the calibrated airspeed, at which,<BR>when the critical engine is made inoperative, and operating<BR>engine(s) developing TOGA thrust, it is possible to maintain<BR>the control of the aeroplane and maintain straight flight with an<BR>angle of bank of not more than 5°.<BR>(VMCL is also determined with 2 engines inoperative for three -<BR>engined and four-engined aeroplanes.)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>OEI<BR>TOGA Thrust<BR>Gear retracted<BR>S/F approach config.<BR>Minimum gradient:<BR>2-E : 2.1 %<BR>3-E : 2.4 %<BR>4-E : 2.7 %<BR>V  1,4 VSR<BR> Approach configuration (FAR-JAR §25.121)<BR>LANDING CLIMB<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>AEO<BR>TOGA thrust (8s)<BR>Gear extended<BR>S/F landing config.<BR> Approach configuration (FAR-JAR §25.121)<BR> Landing configuration (FAR-JAR §25.119)<BR>OEI<BR>TOGA Thrust<BR>Gear retracted<BR>S/F approach config.<BR>1.13 VSR V 1.3 Vs<BR>VMCL<BR>Minimum gradient:<BR>3.2 %<BR>LANDING CLIMB<BR>V  1,4 VSR<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Landing distance (FAR-JAR § 25.125)<BR>50 ft V=0<BR>LD<BR>braking<BR>Means of braking :<BR> wheel brakes<BR> Spoilers<BR> Reverses<BR>Means of braking :<BR> wheel brakes<BR> Spoilers<BR> Reverses<BR>VREF  1,23 VSR<BR>VMCL VREF<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> LDA : Landing Distance Available<BR>&raquo; rectangular area of concrete or asphalt used for take<BR>off and landing<BR>Runway<BR>Runway<BR>The Stopway may not<BR>be used for landing !<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Obstacle influence on LDA<BR>LDA<BR>60 m<BR>deported threshold<BR>2%<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> LDA : Landing Distance Available<BR>LD  60 % LDA Turbojet<BR>LD  70 % LDA Turboprop<BR>50 ft V=0<BR>LDA<BR>LD<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Zp and temperature<BR>Zp or T°C  : same effects as<BR>for take-off<BR>- GA thrust is reduced<BR><BR>climb gradient <BR>- Landing speed increases<BR><BR>landing distance <BR> Chosen parameters<BR>Landing data : Factors of influence<BR>Sustained parameters<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters  Chosen parameters<BR>Landing data: Factors of influence<BR>Zp and temperature<BR>Wind<BR>Headwind : 50%effect<BR>Tailwind : 150%effect<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and temperature<BR> Wind<BR> Runway slope<BR>neglected<BR> Chosen parameters<BR>Landing data: Factors of influence<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Chosen parameters<BR> Zp and temperature<BR> Wind<BR> Runway slope<BR> Runway condition  Wet or contaminated runways :<BR> LD WET = 1.15 x LD DRY<BR>But a shorter landing distance may be used<BR>if AFM includes specific additional<BR>information about landing distance on<BR>wet or contaminated runways<BR>Landing data: Factors of influence<BR>Sustained parameters<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Sustained parameters<BR> Zp and temperature<BR> Wind<BR> Runway slope<BR> Runway condition<BR> Chosen parameters<BR> Flaps<BR>Landing data: Factors of influence<BR>Flaps setting <BR><BR>Landing distance <BR>Climb gradient <BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The lower of :<BR> Maximum landing design weight<BR> Maximum landing weight due to performance<BR> Runway limitation<BR> Landing climb limitation<BR>– approach configuration OEI<BR>– landing configuration AEO<BR>MAXIMUM ALLOWED LANDING WEIGHT (RLW)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Minimum speed<BR>2 - Landing climb<BR>3 - Landing distance<BR>4 - Landing distance available<BR>5 - Landing data<BR>6 - Maximum allowed landing weight<BR>7 - Overload landing<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> In case of emergency, it is possible to land with a weight &gt;<BR>MLDW :<BR> the structural aeroplane resistance is protected for a<BR>landing at MTODW with a rate = -360 ft/mn<BR> But the minimum required climb gradients in case of goaround<BR>must be complied with<BR>FAR JAR § 25.1001<BR>OVERLOAD LANDING FUEL JETTISONING<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>MTOW<BR>15 mn emergency flight<BR>Example : A300 B4<BR>Zp = 2000ft<BR>t°C = + 30°C<BR>Jettison = 640 kg/mn<BR>MTOW = 160.2 t<BR>L. climb lim. = 151.1 t<BR>160.2 - (15 x 0.64) = 150.6 &lt; 151.1<BR>The aeroplane must comply<BR>with landing climb requirements<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Regulatory Takeoff Weight Chart (RTOW Chart)<BR> “Regulatory TakeOff Weight”<BR> charts (RTOW). The charts must be generated for<BR>each runway heading, and can beproduced for<BR>different takeoff conditions at the convenience of the<BR>applicant (temperature, wind, QNH, flap setting,<BR>runway status, inoperative items).<BR> They provide the:<BR>• Maximum Takeoff Weight (MTOW)<BR>• Takeoff speeds (V1,VR,V2)<BR>• Limitation code<BR>• Minimum and maximum acceleration heights.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Example: MTOW and speeds determination<BR>an example of an A319<BR> DATA<BR>• Takeoff from Paris-Orly, Runway 08<BR>• Slat/Flap configuration: 1+F<BR>• OAT = 24&ordm;C<BR>• Wind = Calm<BR>• QNH = 1013 hPa<BR>• Air conditioning: Off<BR>• Runway state: Dry<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Example: MTOW and speeds determination<BR>an example of an A319<BR> RESULT<BR>• MTOW = 73.6 tons<BR>• V1 = 149 Kt, VR = 149 Kt, V2 = 153 Kt<BR>• MTOW limited by: second segment and obstacle(2/4)<BR> Note: In case of deviation from the chart<BR>reference conditions (QNH, air conditioning…),<BR>corrections have to be applied to the MTOW and<BR>the speeds.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Example: Flexible Temperature and Speeds Determination<BR> DATA<BR>• Takeoff from Paris-Orly, Runway 08<BR>• Slat/Flap configuration: 1+F<BR>• Actual TOW = 66 tons<BR>• OAT = 24&ordm;C<BR>• Wind = +20 Kt headwind<BR>• QNH = 1013 hPa<BR>• Air conditioning: Off<BR>• Runway state: D<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Example: Flexible Temperature and Speeds Determination<BR> RESULT<BR>• Flex Temp = 68&ordm;C<BR>• V1 = 145 Kt, VR = 145 Kt, V2 = 150 Kt<BR> Note: In case of deviation from the chart<BR>reference conditions (QNH, air conditioning…),<BR>corrections have to be applied to the flexible<BR>temperature.<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module

忙盲忙 发表于 2010-7-28 08:57:27

楼主辛苦啦!

楼主辛苦啦!

胖子 发表于 2010-8-27 11:28:18

楼主辛苦啦!

xheleon 发表于 2010-8-28 17:32:30

非常感谢楼主发布!!!!

胖子 发表于 2010-9-2 00:21:56

楼主太伟大了:handshake :handshake

zyb0606 发表于 2010-9-3 08:17:28

只能由衷感谢楼主的无私贡献了

郭湘锟爱航空 发表于 2010-9-28 20:35:48

楼主辛苦了

ida51737 发表于 2010-11-4 15:42:42

nice  up  up    up up

wpfreda 发表于 2011-2-10 22:40:45

Thanks for your kindness.
页: [1] 2
查看完整版本: 操作限制 operating limitation