in flight performance 空中性能
<P>in flight performance 空中性能</P><P>**** Hidden Message *****</P> A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>• Table of contents<BR>• Flight operations duties<BR>• European Applicable Regulation<BR>• General<BR>• General aircraft limitations<BR>• Payload Range<BR>• Operating limitations<BR>• In flight performance<BR>• One engine inoperative performance<BR>• Flight planning<BR>• weight and balance<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Table of Contents<BR>1 - Cruise<BR>2 - Climb<BR>3 - Descent<BR>4 - Holding<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Table of Contents<BR>1 - Cruise<BR>2 - Climb<BR>3 - Descent<BR>4 - Holding<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Titre du diagramme<BR>Safety<BR>Respecting official requirements<BR>.Operating rules<BR>.Airworthiness<BR>Economy<BR>Lowering direct operating costs<BR>. Choice of speed<BR>. Choice of flight levels<BR>2 goals<BR>OEI cruise AEO cruise<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct Operating Costs(DOC)<BR> Direct Operating costs are made of :<BR> Fixed costs<BR> cyclic maintenance costs<BR> airport and en-route taxes<BR> operating charges, insurance, etc...<BR> Flight time related costs<BR> hourly maintenance costs<BR> crew costs<BR> Fuel consumption related costs<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Titre du diagramme<BR>Lower<BR>fuel consumption<BR>Fuel consumption related costs<BR>Lower<BR>flight time<BR>Flight time related costs<BR>Minimize<BR>direct operating<BR>costs<BR>Compromise Time / Fuel<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct Operating Costs (DOC)<BR> Specific range study :<BR>versus Mach number, at given altitude<BR>Mach number optimization<BR>versus altitude, at given Mach number<BR>optimum altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Specific Range<BR>SR = 1<BR>Distance consumption<BR>Unit : nm / ton or nm / 1000 lbs<BR>Example : A320-200 SR = 200 nm / ton<BR>(58 tons at FL 350 M.78)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> 2 - Specific Range<BR>SR =<BR>SR =<BR>1<BR>Distance consumption<BR>Ground speed<BR>Hourly consumption<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> 2 - Specific Range<BR>SR =<BR>SR =<BR>With no wind SR =<BR>1<BR>Distance consumption<BR>Ground speed<BR>Hourly consumption<BR>TAS<BR>Ch<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>T<BR>To<BR>speed of sound<BR>temperature<BR>2 - Specific Range<BR> TAS = a.M and a = ao<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Specific Range<BR> TAS = a.M and a = ao T<BR>To<BR>661 kt<BR>288 °K<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TAS= a.M and a = ao<BR> Ch = Csp. Ta and Ta =<BR>T<BR>To<BR>Specific consumption<BR>Engine thrust available<BR>Lift to Drag ratio<BR>mg<BR>L/D<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> TAS= a.M and a = ao<BR> Ch = Csp. Ta and Ta =<BR>T<BR>To<BR>mg<BR>L/D<BR>mg<BR>L/D<BR>T<BR>To<BR>ao M<BR>Csp<BR>SR =<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR =<BR>ao M L/D<BR>Csp<BR>T To<BR>mg<BR>2 - Specific Range<BR>Aerodynamics<BR>Engine Weight<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> SR variations with Mach<BR>number<BR>M.L/D<BR>Csp<BR>T To<BR>.70 .80 .90 Mach<BR>0,075<BR>Csp<BR>T<BR>To<BR>0,085<BR>(kg/h.N)<BR>10<BR>15<BR>M.L/D Given :<BR>- weight<BR>- altitude<BR>2 - Specific Range<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> SR variations with Mach<BR>number<BR>Mach<BR>SR<BR>.70 .80 .90<BR>100<BR>150<BR>200<BR>250 (nm/t)<BR>Given :<BR>- weight<BR>- altitude<BR>SR max<BR>Maxi-range Mach<BR>SR reaches a maximum<BR>2 - Specific Range<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>SR<BR>All along the flight,<BR>the fuel consumption<BR>makes the aeroplane<BR>weight decrease<BR> Maxi-Range<BR> influence of weight Given :<BR>- altitude<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>SR<BR>burn off<BR> Maxi-Range<BR>Given :<BR>- altitude<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>SR<BR>burn off<BR> Maxi-Range<BR>Given :<BR>- altitude<BR>3 - All engines operating cruise speeds<BR>As weight decreases,<BR>- the specific range increases<BR>- the Maxi-Range Mach decreases too<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>SR<BR>burn off<BR> Maxi-Range<BR> Cd minimum : trip fuel is<BR>minimum<BR> but low speed : trip time is<BR>quite long !<BR>Given :<BR>- altitude<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>SR<BR>burn off<BR> Maxi-Range<BR> Cd minimum : trip fuel is<BR>minimum<BR> but low speed : trip time is<BR>quite long !<BR> Alternative :<BR> Increasing cruise speed without<BR>too much increasing of fuel<BR>consumption<BR>Given :<BR>- altitude<BR>Long-Range<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Decrease of 1% in SR max<BR> Long-Range<BR>Mach<BR>SR<BR>.70 .80 .90<BR>-1%<BR>MR LR<BR>Given :<BR>- altitude<BR>Flying at Long-Range cruise<BR>enables a greater speed than<BR>MR, and a relatively low fuel<BR>consumption<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Long-Range :<BR> influence of weight<BR>Long-Range Mach decreases<BR>the same way as MR Mach<BR>Mach<BR>SR<BR>.70 .80 .90<BR>-1%<BR>-1%<BR>-1%<BR>LRC<BR>burn off<BR>Given :<BR>MR - altitude<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>-1%<BR>-1%<BR>-1%<BR> Constant Mach :<BR>Mach<BR>SR<BR>.70 .80 .90<BR>LRC<BR>burn off<BR>constant M<BR>Given :<BR>MR - altitude<BR>3 - All engines operating cruise speeds<BR>easier to remember ! (it is the<BR>same whatever altitude and<BR>weight are)<BR>but doesn't follow the<BR>optimum (especially when<BR>there is no change in altitude)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Goal : minimize D.O.C.<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Goal : minimize D.O.C.<BR> For a given trip :<BR> Fuel consumption related costs : CF . TF<BR> CF : Cost of fuel unit<BR> TF : Trip fuel<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Goal : minimize D.O.C.<BR> For a given trip :<BR> Fuel consumption related costs : CF . TF<BR> Flight time related costs : CT . t<BR> CT : Time related costs per flight hour<BR>– hourly maintenance costs<BR>– crew wages<BR> t : Block time<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Goal : minimize D.O.C.<BR> For a given trip :<BR> Fuel consumption related costs : CF . TF<BR> Flight time related costs : CT . t<BR> Fixed costs : CC<BR> cyclic maintenance costs<BR> airport operational taxes<BR> operating charges, insurance...<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Goal : minimize D.O.C.<BR>For a given trip :<BR> Fuel consumption related costs : CF . TF<BR> Flight time related costs : CT . t<BR> Fixed costs : CC<BR>DOC = CF . TF + CT . t + CC<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>For one nautical mile :<BR>DOC1nm = CF . 1+ CT . 1 +<BR>V<BR>CC<BR>D<BR>Fuel consumption<BR>related costs<BR>Time<BR>related costs<BR>Fixed costs<BR>SR<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Costs<BR>Mach<BR>MR<BR>LRC<BR>Cost of fuel<BR>Cost of time<BR>Fixed costs<BR>ECON<BR>Given weight and altitude<BR>DOC<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Costs<BR>Mach<BR>ECON<BR>MR<BR>LRC<BR>Cost of fuel<BR>Cost of time<BR>Fixed costs<BR>Given weight and altitude<BR>ECON Mach is linked to MR Mach : DOC<BR>when aircraft weight decreases,<BR>ECON Mach decreases.<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Minimum DOC :<BR>dDOC<BR>dM<BR>= 0<BR>3 - All engines operating cruise speeds<BR>1<BR>dDOC SR<BR>dM<BR>= CF + CT<BR>-1<BR>aM2<BR>d( )<BR>dM<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Minimum DOC :<BR>1<BR>SR<BR>CF<BR>d( )<BR>dM<BR>+ CT<BR>-1<BR>aM2 = 0<BR>M2<BR>1<BR>SR<BR>d( )<BR>dM<BR>=<BR>CT<BR>CF<BR>1a<BR>COST INDEX<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The ECON Mach depends on COST INDEX<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> The ECON Mach depends on COST INDEX<BR> Cost of time<BR> Cost of fuel<BR><BR>C.I. =<BR>3 - All engines operating cruise speeds<BR>Unit : kg / mn<BR>Range : 0 to 200<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Extreme values of cost index :<BR> C.I. = 0 MR Mach<BR> C.I. max Maximum Mach<BR>Number<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Extreme values of cost index :<BR> C.I. = 0 MR Mach<BR> C.I. max Maximum Mach<BR>Number<BR>Increase in cost index Increase in Mach<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> ECON Mach MR Mach<BR>At constant Zp , when weight decreases, ECON Mach does so<BR>At constant weight, when Zp increases, ECON Mach does so<BR>3 - All engines operating cruise speeds<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR =<BR>ao M L/D<BR>Csp<BR>T To<BR>mg<BR>When Zp increases, for a<BR>given aircraft weight,<BR>SR follows lift-to-drag ratio<BR>variations.<BR>(without taking into account the low<BR>variations of reduced Csp )<BR>For a given Mach number :<BR>constant<BR>At level flight : mg = 0,7 S P CL M2<BR>When Zp increases (P decreases), then CL must be increased<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>CL<BR>M<BR>lift-to-drag ratio increases...<BR>When Zp increases, CL must increase<BR>CD<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>CL<BR>M<BR>CL<BR>Lift-to-drag increases,<BR>reaches a maximum,<BR>and then decreases<BR>SR increases,<BR>reaches a maximum,<BR>and then decreases<BR>Zp<BR>SR<BR>m M<BR>L/D max<BR>CD<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>m M<BR>For the given Mach and weight, there is an optimum altitude<BR>at which the aircraft has the best lift-to-drag ratio.<BR>Optimum<BR>altitude<BR>CL Zp<BR>M<BR>CL<BR>L/D max<BR>CD<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> When weight decreases SR increases<BR> At optimum altitude : L/D max CL fixed<BR> With burn off :<BR>mg = 0,7 S P CL M2<BR>constant<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> When weight decreases SR increases<BR> At optimum altitude : L/D max CL fixed<BR> With burn off :<BR> At optimum altitude :<BR>mP<BR>is constant<BR>4 -Altitude optimisation<BR>mg = 0,7 S P CL M2<BR>constant<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Optimum altitude :<BR>Zp<BR>SR<BR>m1 m > m2<BR>mP<BR>= ct<BR>SR increases with burn off<BR>Optimum altitude increases too<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Optimum altitude :<BR>Zp<BR>SR<BR>Optimum altitude<BR>m1 > m2 > m3<BR>Zp<BR>weight<BR>burn off<BR>mP<BR>= ct<BR>4 -Altitude optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>ISA + 20<BR>Engine limitation Maximum Cruise Thrust<BR>ISA or below<BR>MCrT limits<BR>Cruise Mach<BR>SR<BR>M<BR>Zp1<BR>m3<BR>m2<BR>m1<BR>At weight m2, with cruise Mach,<BR>MCT cruise is reached at Zp1.<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>M<BR>m3<BR>m2<BR>m1<BR>ISA or below<BR>ISA + 20<BR>ISA + 20<BR>ISA or<BR>below<BR>Cruise Mach<BR>Engine limitation Maximum Cruise Thrust<BR>MCrT limits<BR>Zp1 SR<BR>M<BR>m3<BR>m2<BR>m1<BR>Cruise Mach<BR>Zp2 > Zp1<BR>MCrT is more limitative<BR>at higher altitude<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>M<BR>m3<BR>m2<BR>m1<BR>ISA + 20<BR>ISA or<BR>below<BR>Cruise Mach<BR>Engine limitation Maximum Cruise Thrust<BR>Flying at Zp2, with the same weight<BR>would require a thrust higher than MCrT<BR>Zp2 > Zp1<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>M<BR>m3<BR>m2<BR>m1<BR>ISA + 20<BR>ISA or<BR>below<BR>Cruise Mach<BR>Engine limitation Maximum Cruise Thrust<BR>Only lighter weights can be flown at higher<BR>altitude with the same cruise Mach<BR>Zp2 > Zp1<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>M<BR>m3<BR>m2<BR>m1<BR>ISA + 20<BR>ISA or<BR>below<BR>Cruise Mach<BR>Engine limitation Maximum Cruise Thrust<BR>Zp2 is the maximum cruise altitude for m3<BR>in ISA condition, at this cruise Mach number<BR>Zp2 > Zp1<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Definition :<BR>For a given aircraft weight, it is the maximum<BR>altitude at maximum cruise thrust in level flight with a<BR>given Mach number .<BR>5 - Maximum cruise altitude<BR>= f(temp.)<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>ISA or below<BR>ISA + 20<BR>Maximum cruise altitude<BR>decreases when :<BR>- weight increases<BR>- temperature increases<BR>- Mach increases<BR>Zp<BR>weights<BR>Max cruise altitude<BR>M<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Zp<BR>weights<BR>ISA or below<BR>ISA + 20<BR>Max cruise altitude<BR>engine-limited area<BR>M<BR>5 - Maximum cruise altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Cruise at ECON MACH Zp<BR>weights<BR>ISA or below<BR>ISA + 20<BR>Max cruise altitude<BR>Optimum altitude<BR>ECON Mach<BR>iso-Mach curves<BR>M<BR>5 - Maximum cruise altitude<BR>Mach depends on :<BR>altitude<BR>weight<BR>iso-Mach curves are<BR>parallel to optimum<BR>altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Effect of wind on optimum<BR>altitude :<BR> if wind is more<BR>favourable at lower<BR>altitude, it may be worth<BR>flying at this altitude to<BR>increase the ground<BR>specific range.<BR>Zp<BR>weights<BR>ISA or below<BR>ISA + 20<BR>Max cruise altitude<BR>Optimum altitude<BR>wind deviation for constant ground SR<BR>20<BR>40<BR>60<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 - ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> LIFT RANGE :<BR> On level flight mg = 0.7 S P CL M2<BR> When CL = CLmax lift limit<BR>(if increases, stall occurs)<BR> Lift range is associated with CLmax M2 curve<BR>6 - Buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1<BR>CL max M2<BR>M<BR>1<BR>CL max<BR>M<BR>Compressibility effect<BR>6 - Buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>CL max M2<BR>M<BR>1<BR> mg = 0.7 S P CLmaxM2<BR>given weight<BR>Zp<BR>lift range<BR>Mmin Mmax<BR>Zp max Lift ceiling<BR>Level flight (no load factor)<BR>6 - Buffet limit<BR>At given weight,<BR>to each CLmax M2<BR>corresponds one altitude<BR>(static Pressure)<BR>When Zp increases, the lift<BR>range decreases.<BR> lift ceiling<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> While maneuvering, the aeroplane suffers load factors<BR> mg n mg<BR> buffet limit : n mg = 0.7 S P CLmaxM2<BR>buffet = severe vibrations just before stall occurs<BR>6 - Buffet limit<BR>At given altitude, and given weight, to each CLmaxM2<BR>corresponds one load factor<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>n<BR>Zp1<BR>given weight<BR>6 - Buffet limit<BR>Mmin Mmax<BR>n1<BR>At given weight and altitude, the aeroplane can suffer a load<BR>factor equal to n1 before buffeting at Mmin (or Mmax).<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>n<BR>FL 350<BR>given weight : 60t<BR>Example : A320 200<BR>Mmin= 0.65 Mmax> MMO (0.84)<BR>1.3 g<BR>6 - Buffet limit<BR>1.3 g corresponds to<BR>a bank angle of 39°<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>n<BR>Zp1<BR>Mmin Mmax<BR>n1<BR>given weight<BR>At given altitude<BR>and given weight,<BR>there is a maximum<BR>admissible load factor<BR>6 - Buffet limit<BR>nmax<BR>M<BR>This Mach allows the<BR>higher load factor margin<BR>with buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>n<BR>FL 350<BR>Mmax> MMO<BR>given weight : 60t<BR>Example : A320 200<BR>1.3 g<BR>Mmin= 0.65 0.78<BR>1.8 g<BR>6 - Buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Mach<BR>n<BR>at Zp1<BR>Zp1< Zp2< Zp3<BR>1.3 g<BR>Mmin Mmax<BR>given weight<BR>Effect of altitude : nmax decreases<BR>lift range decreases<BR>6 - Buffet limit<BR>at Zp2<BR>Zp3<BR>At Zp3 nmax = 1.3g<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> 1.3 g buffet limited altitude :<BR> at this altitude, nmax = 1.3 g (or bank angle =<BR>39°)<BR> above this altitude, maneuvers of less<BR>than 1.3 g will create buffeting<BR> when the weight decreases (burn off),<BR>1.3 g buffet limited altitude increases<BR>6 - Buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Zp<BR>weights<BR>Optimum altitude<BR>ISA or below<BR>ISA + 20<BR>Max cruise altitude<BR>1.3 g buffet limit<BR> The maximum operational<BR>altitude is the lowest<BR>of :<BR> max cruise altitude<BR> 1.3 g buffet limited<BR>altitude<BR>6 - Buffet limit<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>7. ATC Requirment<BR> Flight Level<BR> Final chosen maximum flight altitude is a adjacent<BR>flight level<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Direct operating cost<BR>2 - Specific range<BR>3 - All engines operating cruise speeds<BR>4 - Altitude optimisation<BR>5 - Maximum cruise altitude<BR>6 - Buffet limit<BR>7 – ATC requirment<BR>8 - Cruise optimisation<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Step climb cruise :<BR> Ideal cruise should follow<BR>the optimum altitude<BR> but ATC constraints<BR>require level flight cruise<BR> airlines have to comply<BR>with<BR>Zp<BR>weight<BR>Optimum altitude<BR>several level flights close to<BR>the optimum altitude<BR>8 - Cruise optimisation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Zp<BR>weight<BR>4000 ft<BR> Above FL290 :<BR> FL separation = 2000 ft<BR> step climb = 4000 ft<BR>(except RVSM zones)<BR>Optimum altitude<BR>8 - Cruise optimisation<BR>2000 ft from optimum altitude<BR>:<BR>Rs = 99% Rsmax<BR>Long flight : 2 or 3 steps<BR>Max cruise altitude can delay<BR>the first climb...<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Table of Contents<BR>1 - Cruise<BR>2 - Climb<BR>3 - Descent<BR>4 - Holding<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Climb angle and rate of climb<BR>2 - Climb in operation<BR>3 - Influencing parameters<BR>4 - Cabin climb<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Climb angle and rate of climb<BR>2 - Climb in operation<BR>3 – Influencing parameters<BR>4 - Cabin climb<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>TAS<BR>rate of climb<BR>TASmax TASRCmax<BR>Maximum<BR>rate of climb<BR>Given<BR>m, thrust, operationnal data<BR>max = maximum air<BR>climb gradient<BR>1 - Climb angle and rate of climb<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>g<BR>a <g<BR>GS<BR>a<BR>TAS Rate of Climb<BR>RC<BR>1 - Climb angle and rate of climb<BR>Headwind<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Climb angle and rate of climb<BR>2 - Climb in operation<BR>3 – Influencing parameters<BR>4 - Cabin climb<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Climb in operation<BR>Example: A320<BR>climb at constant speed<BR>250 kt (ATC limitation)<BR>climb at constant speed<BR>A320 : 300 kt<BR>climb at constant Mach<BR>A320 : M 0.78<BR>Top Of Climb (TOC)<BR>Start of<BR>climb<BR>10000 ft<BR>29500 ft<BR>acceleration<BR>Change over<BR>altitude<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Climb in operation<BR>Energy conservation<BR>Three sources of energy are available to generate aerodynamic forces :<BR>- kinetic energy, which increases with increasing speed<BR>- potential energy, which is proportional to altitude<BR>- chemical energy, from the fuel<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>altitude<BR>True Air Speed Rate of Climb<BR>constant CAS<BR>constant Mach<BR>constant Mach<BR>TROPOPAUSE<BR>climb at constant TAS<BR>2 - Climb in operation<BR>Energy conservation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> <BR>maximum<BR>air climb<BR>gradient<BR>climb at<BR>RC max<BR>minimum consumptiondistance<BR>climb<BR>high speed climb<BR>Cruise FL<BR>MAXI<BR>CLIMB<BR>THRUST<BR>CRUISE THRUST<BR>distance<BR>2 - Climb in operation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Climb at Maximum Rate<BR>Climbing at the maximum rate of climb speed enables a<BR>given altitude to bereached in the shortest time.<BR>Climb at Maximum Gradient<BR> The climb gradient at green dot speed is at its maximum.<BR>Climbing at green dot speed enables a given altitude to be<BR>achieved over the shortest distance.<BR> Climb at Minimum Cost<BR>Minimum Cost<BR>Between CI=0 and CImax<BR>CI=0=IASECON=maximum rate of climb speed<BR>CI=CImax=IASECON=VMO-10kt<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Influencing Parameters<BR>1. Altitude Effect<BR>PA↑ ⇒ climb gradient ↓<BR>rate of climb ↓<BR>2. Temperature Effect<BR>Temperature ↑ ⇒ climb gradient ↓<BR>rate of climb↓<BR> 3. Weight Effect<BR>Weight ↑ ⇒ climb gradient ↑<BR>rate of climb ↑<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> Influencing Parameters<BR>4. Wind Effect<BR>Headwind ↑ ⇒ Rate of climb<BR>Fuel and time to T/C →<BR>Flight path angle (γg) ↑<BR>Ground distance to T/C↓<BR>Tailwind↑ ⇒ Rate of climb →<BR>Fuel and time to T/C→<BR>Flight path angle (γg) ↑<BR>Ground distance to T/C ↑<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Climb angle and rate of climb<BR>2 - Climb in operation<BR>3 - Cabin climb<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>aircraft<BR>cabin<BR>time<BR>cabin rate of climb 500 ft/mn<BR>pressure<BR>Zp<BR>Zp > 30000 ft<BR>Zp = 8000 ft<BR>3 - Cabin climb<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Table of Contents<BR>1 - Cruise<BR>2 - Climb<BR>3 - Descent<BR>4 - Holding<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Descent angle and rate of descent<BR>2 - Descent in operation<BR>3 - Cabin descent<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Descent angle and rate of descent<BR>2 - Descent in operation<BR>3 - Cabin descent<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>TAS<BR>rate of climb<BR>rate of descent<BR>TASRDmin TASmin<BR>minimum rate<BR>of descent<BR>maximum rate<BR>of descent<BR>Given<BR>engine thrust, m<BR>speed limit VMO / MMO<BR>1 - Descent angle and rate of descent<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>True Air Speed<BR>rate of<BR>descent<BR>min<BR>speed limit VMO / MMO<BR>light gross weight<BR>heavy gross weight<BR>1 - Descent angle and rate of descent<BR>Influence of weight<BR>RD when w <BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> air angle of descent<BR>ground angle of descent<BR>flight path<BR>TAS<BR>HEADWIND<BR>1 - Descent angle and rate of descent<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>no wind<BR>FL 350<BR>102 NM<BR>tailwind<BR>20 kt 108 NM<BR>headwind<BR>20 kt<BR>96 NM<BR>1 - Descent angle and rate of descent<BR>A 320<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Descent angle and rate of descent<BR>2 - Descent in operation<BR>3 - Cabin descent<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>V.3.3.2 - Descent in operation<BR>Example: A320<BR>landing<BR>descent at constant speed<BR>A320: 300 kt (CAS)<BR>descent at constant speed<BR>250 kt (ATC limitation)<BR>descent at constant Mach<BR>A320 : M 0.78<BR>deceleration<BR>deceleration to<BR>approach speed<BR>10000 ft<BR>29500 ft<BR>Top Of<BR>Descent (TOD)<BR>.78/300/250<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>altitude<BR>True Air Speed Rate of Descent<BR>constant CAS<BR>constant Mach<BR>constant Mach<BR>TROPOPAUSE<BR>V.3.3.2 - Descent in operation<BR>Energy conservation<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>cruise thrust<BR>descent at<BR>idle thrust<BR>high speed<BR>low speed<BR>2 - Descent in operation<BR>Emergency descent :<BR>- Idle<BR>- MMO/VMO<BR>- Spoilers<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Descent in operation<BR> Influencing Parameters<BR>1. Altitude Effect<BR>it is difficult to assess descent parameters (gradient<BR>and rate), as they only depend on drag and not on<BR>thrust (which is assumed to be set to idle).<BR>2. Temperature Effect<BR>As for pressure altitude, the temperature effect is<BR>difficult to assess. Indeed,<BR>3. Weight Effect<BR>Weight↑ ⇒ descent gradient↓<BR>rate of descent ↓<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>2 - Descent in operation<BR> 4. Wind Effect<BR>Headwind ↑ ⇒ Rate of descent →<BR>Fuel and time from T/D →<BR>Flight path angle ∣γg∣↑<BR>Ground distance from T/D ↓<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Descent angle and rate of descent<BR>2 - Descent in operation<BR>3 - Cabin descent<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>emergency<BR>descent<BR>cruise<BR>time<BR>Zp A320<BR>maximum altitude<BR>complying with Pmax<BR>envelope of<BR>allowed descents<BR>Pmax<BR>normal cabin<BR>rate of descent<BR>300 ft/min<BR>3 - Cabin descent<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Table of Contents<BR>1 - Cruise<BR>2 - Climb<BR>3 - Descent<BR>4 - Holding<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Holding speed<BR>2 - Optimum holding altitude<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Holding speed<BR>2 - Optimum holding altitude<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> 1 - Holding speed<BR> Holding minimize the fuel flow (FF)<BR>FF = TSFC x Thrust<BR>Minimize thrust<BR>Minimum drag or maximum L/D ratio<BR>T = Drag = mg<BR>L/D<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> 1 - Holding speed<BR>D,T<BR>V<BR>Minimum thrust<BR>drag<BR>Given<BR>m, t°C, Zp,<BR>thrust lever<BR>L/D max V opti<BR>Airbus<BR>Vopti = GREEN DOT<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>1 - Holding speed<BR>2 - Optimum holding altitude<BR>Table of Contents<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Zp<BR>FF<BR>Given<BR>m<BR>minimum fuel<BR>hour<BR>consumption per<BR>altitude<BR>Optimum holding<BR>2 - Optimum holding altitude<BR>Minimum Drag Speed<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>Zp<BR>FF<BR>decreasing<BR>weight<BR>optimum holding<BR>altitude<BR>2 - Optimum holding altitude<BR>Minimum Drag Speed<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR> At the end of the flight, the optimum altitude is<BR>often too high (low weight)<BR> In Operations, holding is made at the assigned<BR>altitude (ATC) at the minimum drag speed<BR>corresponding to the weight<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>Mach<BR>Zp<BR>Zp1<BR>Zp4<BR>Zp5<BR>Zp3<BR>Zp2<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>Mach<BR>Zp<BR>Zp1<BR>Zp4<BR>Zp5<BR>Zp3<BR>Zp2<BR>A project supported by AIRBUS and the CAAC<BR>Date of the module<BR>SR<BR>Mach<BR>Zp<BR>Fixed Mach nb<BR>Zp4 = Optimum<BR>altitude to fly<BR>at this Mach nb<BR>(best SR for the<BR>chosen Mach nb)
楼主辛苦啦!
楼主辛苦啦! 是不是空客飞机手册 Long-RangeMach
SR
.70 .80 .90
-1%
MR LR <P>好东西:handshake :handshake </P> 东西挺好的 谢谢了 多谢,收藏之:) nice up up up up