Navigation & flight planning by FMS-equipped aircraft
<P>Navigation & flight planning by FMS-equipped aircraft</P><P>**** Hidden Message *****</P> 10-11-12-13 September 2002-Morocco ARAB INSTRUMENT PROCEDURE DESIGN SEMINAR<BR>Navigation & flight planning<BR>by FMS-equipped aircraft<BR>AI/EE-A 441.0144/01<BR>Table of contents<BR>P.3 Navigation & flight management<BR>P.4An overview of aircraft avionics<BR>P.5GPS PRIMARY navigation<BR>P.8RNP navigation<BR>P.10 Flight management<BR>P.11 Flight planning<BR>P.12 Vertical navigation<BR>P.13 Navigation database : ARINC 424 format<BR>P.14 Path terminator concept<BR>P.15 IF leg type<BR>P.16 TF leg type<BR>P.17 RF leg type (new leg type)<BR>P.18 CF leg type<BR>P.19 DF leg type<BR>P.20 FA leg type<BR>P.21 FC leg type<BR>P.22 FD leg type<BR>P.23 FM leg type<BR>P.24 CA leg type<BR>P.25 CD leg type<BR>P.26 CI leg type<BR>P.27 CR leg type<BR>P.28 AF leg type<BR>P.29 VA leg type<BR>P.30 VD leg type<BR>P.31 VI leg type<BR>P.32 VM leg type<BR>P.33 VR leg type<BR>P.34 PI leg type<BR>P.35 HA, HF, HM leg types<BR>P.36 ARINC 424 leg transitions<BR>P.37 Navigation database related issues<BR>P.38 Compatibility...<BR>P.39 Production process<BR>P.40 Some top level issues<BR>P.44 Recommendations<BR>P.45 Issues summary<BR>P.46 Short term<BR>P.52 Medium term<BR>P.54 Longer term<BR>10-11-12-13 September 2002-Morocco ARAB INSTRUMENT PROCEDURE DESIGN SEMINAR<BR>Navigation & flight management<BR>An overview of aircraft avionics ...<BR> Modern avionics have considerably improved flight<BR>safety on non-precision approaches :<BR> accurate position (RNP 0.3)<BR> flight plan display on EFIS<BR> reference approach path<BR> automated lateral guidance<BR> automated vertical guidance<BR> ground proximity warning system (GPWS)<BR> terrain display on EFIS (EGPWS)<BR> terrain clearance floor warnings (EGPWS)<BR>An overview of aircraft avionics ...<BR>700’<BR>500’ AGL AGL<BR>5 NM 12 NM15 NM<BR>3 degrees<BR>GPS PRIMARY navigation<BR> AIRBUS is promoting GPS PRIMARY navigation<BR> All new A318/A319/A320/A321/A330/A340 production<BR>aircraft are fitted with GPS PRIMARY capable equipment<BR> Ground navaids are only used as a backup<BR> VOR, DME<BR> ADF is not used for navigation<BR> only for procedural navigation check<BR> Hybrid (A320 family & A340 family)<BR>AIRBUS system GPS architecture<BR>MMR<BR>or<BR>GPSSU<BR>ADIRS FMS<BR>IRS position<BR>GPIRS position<BR>GPS raw data<BR>GPS position FMS position<BR>EGPWS<BR> Autonomous (A300-600/A310 family, retrofit solution<BR>for A320 family with older ADIRS)<BR>AIRBUS system GPS architecture<BR>MMR<BR>IRS<BR>FMS<BR>IRS position<BR>GPS position<BR>FMS position<BR>EGPWS<BR> In GPS PRIMARY mode, on-board system integrity has<BR>a confidence greater than 99.9%, so the FMS position<BR>can be relied upon without any additional navigation<BR>cross check (using ground based navaids)<BR> Clear status of GPS PRIMARY is therefore provided to<BR>the crew<BR>GPS PRIMARY crew interface<BR>GPS PRIMARY GPS PRIMARY LOST<BR>GPS PRIMARY crew interface<BR>CLB FLT4567890<BR>CRZ OPT REC MAX<BR>FL350 FL370 FL390<BR><REPORT<BR>UPDATE AT<BR>*[ ]<BR>BRG /DIST<BR>---° /----.- TO [ ]<BR>PREDICTIVE<BR><GPS GPS PRIMARY<BR>REQUIRED ACCUR ESTIMATED<BR>2.1NM HIGH 0.16NM<BR>GPS PRIMARY<BR>CLB FLT4567890<BR>CRZ OPT REC MAX<BR>FL350 FL370 FL390<BR><REPORT<BR>UPDATE AT<BR>*[ ]<BR>BRG /DIST<BR>---° /----.- TO [ ]<BR>PREDICTIVE<BR><GPS<BR>REQUIRED ACCUR ESTIMATED<BR>2.1NM HIGH 0.28NM<BR>GPS PRIMARY LOST<BR>+ triple click during approach<BR>RNP navigation<BR> AIRBUS is promoting RNP (required navigation<BR>performance)<BR> All A318/A319/A320/A321/A330/A340 aircraft are<BR>fitted or have been retrofitted with RNP capable<BR>equipment<BR> RNP allows crew awareness of estimated aircraft<BR>position accuracy compared to procedure designer’s<BR>required performance assumptions<BR>NAV ACCUR UPGRAD<BR> RNP management provides HIGH and LOW navigation<BR>accuracy system monitoring against the Required<BR>Navigation Performance<BR> The system estimated accuracy has a 95% confidence<BR>RNP crew interface<BR>NAV ACCUR UPGRAD NAV ACCUR DOWNGRAD<BR>RNP crew interface<BR>CLB FLT4567890<BR>CRZ OPT REC MAX<BR>FL350 FL370 FL390<BR><REPORT<BR>UPDATE AT<BR>*[ ]<BR>BRG /DIST<BR>---° /----.- TO [ ]<BR>PREDICTIVE<BR><GPS<BR>REQUIRED ACCUR ESTIMATED<BR>0.3NM HIGH 0.28NM<BR>NAV ACCUR UPGRAD<BR>CLB FLT4567890<BR>CRZ OPT REC MAX<BR>FL350 FL370 FL390<BR><REPORT<BR>UPDATE AT<BR>*[ ]<BR>BRG /DIST<BR>---° /----.- TO [ ]<BR>PREDICTIVE<BR><GPS<BR>REQUIRED ACCUR ESTIMATED<BR>0.3NM LOW 0.56NM<BR>NAV ACCUR DOWNGRAD<BR>AIRBUS flight management details<BR> Multi-sensor navigation & automatic navaid tuning<BR> triple IRS, dual VOR & DME, GPS<BR> nIRS only, nIRS/VOR/DME, nIRS/DME/DME, nIRS/GPS<BR> LOC updating<BR> RNP management<BR> GPS primary navigation<BR> RAIM or AIME on-board integrity monitoring<BR> certified for RNP 0.3 NM use<BR> Datalink<BR> including F-PLN, T/O DATA and WIND uplink capability from<BR>AOC (Airline Operational Control)<BR>AIRBUS flight management details<BR> 4D flight planning & predictions<BR> runway to runway 4D pre-computed optimized flight profile<BR> real time optimization<BR> decelerated approach profile, 3D non-precision approaches<BR> full autopilot coupling capability (dual FMS, dual monitored<BR>AP)<BR> time resolution 1 minute, guidance accuracy around 2 minutes<BR> planned improvement to 1 second resolution, accuracy better<BR>than 30 s<BR>Flight planning<BR> Origin<BR> Departure SID<BR> Engine out SID<BR> En-route<BR> Arrival STAR<BR> Approach<BR> Destination<BR> Missed approach<BR> Alternate flight plan<BR>Vertical flight management<BR>D<BR>SPEED<BR>LIMIT<BR>SPEED<BR>CONSTRAINTS<BR>ALTITUDE<BR>CONSTRAINTS ALTITUDE<BR>CONSTRAINTS<BR>ORIGIN<BR>DESTINATION<BR>SPEED<BR>CONSTRAINTS<BR>SPEED<BR>LIMIT<BR>ACCELERATION ALT<BR>THRUST REDUCTION ALT<BR>CRUISE FL STEP FL<BR>IDLE path<BR>geometric path<BR>approach path<BR>pressurization<BR>segment<BR>TAKEOFF CLIMB CRUISE DESCENT APPROACH<BR>APPROACH<BR>SPEEDS<BR>TAKE-OFF<BR>SPEEDS<BR>TIME<BR>CONSTRAINT<BR>10-11-12-13 September 2002-Morocco ARAB INSTRUMENT PROCEDURE DESIGN SEMINAR<BR>Navigation database : ARINC 424<BR>ARINC 424 path terminator concept<BR> The Path and Terminator concept is a means to permit<BR>coding of Terminal Area Procedures, SIDs, STARs and<BR>Approach Procedures<BR> Charted procedure are translated into a sequence of<BR>ARINC 424 legs in the Navigation Database<BR> Flight plans are entered into the FMS by using<BR>procedures from the navigation database and chaining<BR>them together<BR>ARINC 424 path terminator concept<BR> 23 leg types have been created to translate into computer<BR>language (FMS), procedure designed for clock &<BR>compass manual flight<BR> It’s high time to implement RNAV, using only DO236<BR>preferred leg types: IF, TF, RF which are fixed and<BR>without possible interpretation<BR> The leg type is specified at the end point : “path<BR>terminator concept”<BR>IF leg type<BR> The Initial Fix or IF Leg defines a database fix as a point<BR>in space<BR> It is only required to define the beginning of a route or<BR>procedure<BR>TF leg type<BR> Track to a Fix or TF Leg defines a great circle track over<BR>ground between two known databases fixes<BR> Preferred method for specification of straight legs<BR>(course or heading can be mentioned on charts, but<BR>designer should ensure TF leg is used for coding)<BR>RF leg type (new leg type)<BR> Constant Radius Arc or RF Leg defines a constant radius<BR>turn between two database fixes, lines tangent to the arc<BR>and a center fix<BR>CF leg type<BR> Course to a Fix or CF Leg defines a specified course to a<BR>specific database fix<BR> TF legs should be used instead of CF whenever possible<BR>to avoid magnetic variation issues<BR>DF leg type<BR> Direct to a Fix or DF Leg defines an unspecified track<BR>starting from an undefined position to a specified fix<BR> Procedure designers should take into account the FMS<BR>flight path depends on initial aircraft heading as well<BR>FA leg type<BR> Fix to an Altitude or FA Leg defines a specified track<BR>over ground from a database fix to a specified altitude at<BR>an unspecified position<BR>FC leg type<BR> Track from a Fix from a Distance or FC Leg defines a<BR>specified track over ground from a database fix for a<BR>specific distance<BR>FD leg type<BR> Track from a Fix to a DME Distance or FD Leg defines a<BR>specified track over ground from a database fix to a<BR>specific DME Distance which is from a specific database<BR>DME Navaid<BR>FM leg type<BR> From a Fix to a Manual termination or FM Leg defines a<BR>specified track over ground from a database fix until<BR>Manual termination of the leg<BR>CA leg type<BR> Course to an Altitude or CA Leg defines a specified<BR>course to a specific altitude at an unspecified position<BR>CD leg type<BR> Course to a DME Distance or CD Leg defines a specified<BR>course to a specific DME Distance which is from a<BR>specific database DME Navaid<BR>CI leg type<BR> Course to an Intercept or CI Leg defines a specified<BR>course to intercept a subsequent leg<BR>CR leg type<BR> Course to a Radial termination or CR Leg defines a<BR>course to a specified Radial from a specific database<BR>VOR Navaid<BR>AF leg type<BR> Arc to a Fix or AF Leg defines a track over ground at<BR>specified constant distance from a database DME Navaid<BR>VA leg type<BR> Heading to an Altitude termination or VA Leg defines a<BR>specified heading to a specific Altitude termination at an<BR>unspecified position<BR>VD leg type<BR> Heading to a DME Distance termination or VD Leg<BR>defines a specified heading terminating at a specified<BR>DME Distance from a specific database DME Navaid<BR>VI leg type<BR> Heading to an Intercept or VI Leg defines a specified<BR>heading to intercept the subsequent leg at an unspecified<BR>position<BR>VMleg type<BR> Heading to a Manual termination or VM Leg defines a<BR>specified heading until a Manual termination<BR>VR leg type<BR> Heading to a Radial termination or VR Leg defines a<BR>specified heading to a specified radial from a specific<BR>database VOR Navaid<BR>PI leg type<BR> Procedure Turn or PI Leg defines a course reversal<BR>starting at a specific database fix, includes Outbound Leg<BR>followed by a left or right turn and 180 degree course<BR>reversal to intercept the next leg<BR>HA, HF, HMleg types<BR> Racetrack Course Reversal or HA, HF and HM Leg<BR>Types define racetrack pattern or course reversals at a<BR>specified database fix<BR>HA = Altitude Termination<BR>HF = Single circuit terminating<BR>at the fix (base turn)<BR>HM = Manual Termination<BR>ARINC 424 - allowable leg transitions<BR>* = The IF leg is coded only<BR>when the altitude constraints at<BR>each end of the “FX”, “HX” or<BR>“PI” leg are different.<BR>& = A CF/DF, DF/DF or FC/DF<BR>sequence should only be used<BR>when the termination of the first<BR>leg must be over flown,<BR>otherwise alternative coding<BR>should be used.<BR># = The IF/RF combination is<BR>only permitted at the start of the<BR>final approach for FMS, GPS or<BR>MLS coding and only when a<BR>straight line, fixed terminated<BR>transition proceeds the start of<BR>the final.<BR>10-11-12-13 September 2002-Morocco ARAB INSTRUMENT PROCEDURE DESIGN SEMINAR<BR>Navigation database related issues<BR>Compatibility...<BR>Navigation data production process<BR>Procedure design<BR>by Civil Aviation Authorities<BR>Data Supplier<BR>FMS Database Processing<BR>FMS<BR>AIP<BR>ARINC 424 “master” file<BR>Packed Data<BR>operator<BR>responsibility<BR>Some top level issues<BR> Navigation database process is *not* certified<BR> Transcription of procedures in “computer” language<BR>(ARINC 424) requires interpretation<BR> Procedure designer intent is currently only published under<BR>“pilot language” format<BR> Each FMS implementation & logic is different<BR>May results in different flight paths and SOP<BR> Charts and aircraft navigation displays differ<BR> Increased risk of Human error<BR> Training costs<BR>Reminder - flight plan construction<BR> Charted procedure are translated into a sequence of<BR>ARINC 424 legs in the Navigation Database<BR> Flight plans are entered into the FMS by calling<BR>procedures from the navigation database<BR> Procedure segments are chained together (or melded) to<BR>form the FMS flight plan<BR>Example : F-PLN procedure melding<BR> Procedures are chained together to form the FMS flight<BR>plan. Example :<BR>Arrival chart<BR>Airways chart<BR>Approach chart<BR>Enroute<BR>(airways)<BR>STAR-enroute<BR>transition<BR>STAR Approach<BR>STAR-approach<BR>transition (VIA)<BR>Example : procedure compatibility ?<BR> Possible procedure misconnects between en-route,<BR>arrival, and approach charts<BR> Possible discontinuities between or inside procedures<BR> Incompatible or conflicting altitude requirements<BR>between arrival and approach charts<BR>10-11-12-13 September 2002-Morocco ARAB INSTRUMENT PROCEDURE DESIGN SEMINAR<BR>Navigation database recommendations<BR>Waypoint naming issues<BR> Different approach procedure types (ILS/LOC/RNAV…)<BR>use different trajectories and/or waypoint names without<BR>reason<BR> Unnamed waypoints on charts are assigned default names<BR> Same waypoint names used at different locations<BR> Chart wording leading to usage of leg types which cause<BR>the FMS to create its own waypoints, with names which do<BR>not match chart<BR> Coding constraints lead to creation of waypoints not on the<BR>chart<BR>Procedure trajectory issues<BR> Chart wording and/or coding rules lead to coding of<BR>magnetic course leg types such as CF legs<BR> Chart wording and/or coding rules lead to bad coding of<BR>vertical descent angles, which are critical to a correct<BR>vertical path<BR> IFR minimum altitudes often coded as “AT” constraints<BR> Overfly waypoints trajectories are not repeatable<BR> Barometric temperature limitations should be indicated<BR>on charts<BR> Overfly waypoints : depending on wind, aircraft speed,<BR>bank angle limitation etc… the FMS trajectory will be<BR>different<BR>Why not use overfly waypoints ?<BR>trajectory<BR>not repeatable<BR>overfly wpt<BR> Fly-by waypoints : better trajectory control is achieved<BR>as the FMS will track a pre-computed curve<BR>Why use fly-by waypoints ?<BR>controlled<BR>trajectory<BR>fly-by wpt<BR> CF leg magnetic course angles may mismatch :<BR>excessive roll<BR>maneuvering<BR>Why not use CF legs ?<BR>N N<BR> TF legs always fit, independently of magnetic variation :<BR>Why use TF legs ?<BR>IDLE segment<BR>Why code FPA constraint on each<BR>FINAL leg ?<BR>FPA smaller than<BR>altitude constraint<BR>FPA greater than<BR>altitude constraint<BR>No FPA<BR>FPA matches altitude<BR>constraint<BR>Why not use AT altitude constraints ?<BR> Using AT constraints may cause undesired vertical path :<BR>navigation database vertical angle<BR>navigation database vertical angle<BR>MAP<BR>approach profile<BR>MDA<BR>Why use AT_OR_ABOVE altitude<BR>constraints ?<BR> Using AT_OR_ABOVE constraints and FPA constraint<BR>on each leg ensures seamless path<BR>MDA<BR>navigation database vertical angle<BR>navigation database vertical angle<BR>MAP<BR>approach profile<BR>Medium term - recommendations<BR> Implementation of DO201A by civil aviation authorities for<BR>procedure publication<BR> Implementation of DO200A by data providers<BR> Implementation of RTCA DO236 / EUROCAE ED-75<BR> Implementation of ATA Chart, Data and Avionics Harmonization<BR>Top Priorities<BR> Improved transatlantic coordination between working groups,<BR>authorities & industry<BR> ARINC 424, ATA FMS/RNAV Task Force, TARA, RTCA SC-<BR>181 & 193, Eurocae WG-13 & 44, FAA, JAA, Eurocontrol,<BR>ICAO…<BR>Medium term - ATA CDAH priorities<BR> Redesign of existing non-precision approaches to accommodate<BR>VNAV<BR> Altitudes at precision FAF’s<BR> Unnamed step-down fixes<BR> Waypoints on EFIS but not in database or charts<BR> Waypoint names longer than five characters<BR> Duplicate navaid and waypoint identifiers<BR> Different altitude for same point on STAR’s and approaches<BR> Magnetic variation tables used in course calculations<BR> VNAV angle depiction on charts<BR>Longer term - goals<BR> Fully resolve the disconnect between :<BR> the procedure design by the Airspace Planner,<BR> the coded description in the navigation database,<BR> and the way it is displayed and flown by the FMS<BR> End-to-end certified process with integrity guidelines<BR>and criteria<BR> A worldwide, common process with Airworthiness<BR>Authorities involvement under an ICAO mandate<BR>Longer term - recommendations<BR> Publication of a single standard/language for procedure<BR>design, database coding, and FMS<BR> Reduced ARINC 424 set<BR> Improved charts-database-FMS compatibility<BR> Design of “FMS-friendly” procedures<BR> Publication of these procedures using FMS compatible<BR>language (in addition to charts)<BR> Publications of standards for navigation database<BR>integrity and certification<BR>Longer term - common language<BR> Comprehensive worldwide commonality requires rules at<BR>ICAO level<BR> A common coding Standard should be :<BR> clearly defined,<BR> including rules for use by both the aircraft and the RNAV<BR>Airspace Planner,<BR> the minimum capability of any "FANS RNAV system”,<BR> the maximum set usable by the RNAV Airspace Planner<BR> This would ensure a unique unambiguous coding of<BR>routes and procedures<BR>Longer term - FMS friendly procedures<BR> Use only fixed, named waypoints<BR> For straight segments use only TF legs<BR> For large course changes (>30°) use RF legs<BR> Use only fly-by waypoint transitions (no overfly)<BR> Put a waypoint at each vertical path change<BR> Use descent gradients between 2.5° and 3.5°<BR> Start the missed approach at or before the runway<BR> Use same waypoint names and approach path for all approach types<BR>to a given runway<BR> Use unique waypoint names (max 5 characters)<BR>Longer term - integrity<BR> Integrity must concern the entire process, from<BR>procedure design to the loading of the FMS<BR> Ultimate goal should be a fully digital process<BR> Process should be under direct supervision of airspace<BR>management authorities<BR> Worldwide implementation requires ICAO rules<BR>End of presentation :<BR>Any question? 看看哦 谢谢 正需要啊,多谢楼主 :Q :Q :Q :Q :Q 非常感谢楼主发布!!!! <P>thanks for the good material!</P> 为啥隐藏啊 民航不是应该开放精神么 好东西,找了好久了 谢谢楼主分享
页:
[1]
2