GNSS and GBAS Introduction_Honeywell
<P>GNSS and GBAS Introduction_Honeywell</P><P>**** Hidden Message *****</P> Dave Jensen, John Howard<BR>Honeywell, Precision Landing Systems<BR>29-30 Oct 2009<BR>CAAC New Technology Seminar - GNSS<BR>GNSS and GBAS Introduction<BR>􀃆 Honeywell.com<BR>GNSS and GBAS<BR>• Global Navigation Satellite System (GNSS)<BR>– Current implementations, applications<BR>– How it works<BR>– Accuracy, Integrity<BR>• Types of GNSS Augmentation<BR>• Ground Based Augmentation System (GBAS)<BR>– How it works<BR>– Architecture<BR>– Subsystems<BR>• GPS Accuracy and Aircraft Protection Levels<BR>– Un-augmented<BR>– With WAAS<BR>– With GBAS<BR>Dave Jensen/John Howard<BR>2<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>􀃆 Honeywell.com<BR>Current GNSS<BR>GNSS Compass GPS Galileo GLONASS<BR>Origin China USA Europe Russia<BR>Operational 2015 1995 2012 1995<BR># Satellites NA / 35 30 / 32 NA / 30 19 / 24<BR>21 150 k 22 200 k 23 222 k 19 100 k<BR>• Global Navigation Orbits<BR>21,150 km<BR>12.6h<BR>22,200 km<BR>12.0h<BR>23,222 km<BR>14.1h<BR>19,100 km<BR>11.3h<BR>Satellite Systems (GNSS)<BR>– Have become a global utility<BR>– Provide civilian and military (precise) positioning services<BR>– Consistent, predictable, dependable performance<BR>• Applications for GNSS Keep Growing<BR>– Agriculture, Aviation, Marine, Surveying, Traffic, Timing, Tectonics...<BR>P i i i ti ith h l )<BR>Dave Jensen/John Howard<BR>3<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>– Precision navigation ( with help)<BR>􀃆 Honeywell.com<BR>GNSS Theory of Operation<BR>Dave Jensen/John Howard<BR>4<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>􀃆 Honeywell.com<BR>GNSS Theory of Operation<BR>• Each satellite transmits its position and a time signal<BR>• The signals are delayed by the distance traveled to user<BR>• From the delay, user calculates distance or “pseudorange” to each satellite<BR>• User determines where there pseudoranges “overlap”<BR>– This is your position!<BR>• GNSS Provides Position, but No Integrity and Limited Accuracy<BR>– Precision application require accuracy<BR>– Safety applications require integrity<BR>• Receiver Autonomous Integrity Monitor (RAIM)<BR>– Provides user with integrity of their position solution<BR>• Used in aircraft receivers<BR>– Requires at least 5 satellites in view<BR>– Receiver excludes 1 or 2 satellites<BR>• Determine a “position” (with satellite excluded)<BR>– Repeat for all satellites in view<BR>– Determine error bound (integrity) of position by<BR>• Discarding outlier “position” solutions<BR>Dave Jensen/John Howard<BR>5<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>• Computing variance of “position” solutions<BR>􀃆 Honeywell.com<BR>GNSS Accuracy<BR>• GPS Position Errors can be up to 10 m<BR>• Predominant GNSS Error Sources are:<BR>– Ionosphere (up to 5 m)<BR>– Satellite Position (up to 2.5 m)<BR>– Troposphere (up to 2 m)<BR>– Satellite Clock (up to 2 m)<BR>– Multipath/Reflections (up to 1 m)<BR>– Calculation/Rounding (up to 1 m)<BR>• Poor Geometry of Satellites Increases these Errors<BR>– Geometric Dilution of Precision (GDOP)<BR>• Errors are Measurable, Locally-Correlated, but not Predictable<BR>• Need a System that can Reliably Measure the Errors and Make<BR>Available to Users<BR>– GNSS Augmentation!<BR>Dave Jensen/John Howard<BR>6<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>g<BR>􀃆 Honeywell.com<BR>GNSS Augmentation Types<BR>• Enhance GNSS Accuracy and Integrity<BR>• Space Based Augmentation System (SBAS)<BR>– Network of ground stations takes local measurements<BR>– Control stations determine errors and transmits error “map” to satellites<BR>– Satellite transmits corrections “map”, integrity data to users<BR>e.g. “WAAS” augments GPS for North America<BR>•Ground Based Augmentation System* (GBAS)<BR>– Ground station determines local errors<BR>– Ground station broadcasts local corrections, integrity data directly to users<BR>e.g. “LAAS” augments GPS for an airport<BR>• Aircraft Based Augmentation System (ABAS)<BR>– Aircraft autonomously determines local errors<BR>– On-board GPS monitors provide integrity<BR>– RAIM concept with additional sensors and monitoring<BR>Dave Jensen/John Howard<BR>7<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>p g<BR>*Only GBAS provides required integrity, accuracy & availability for precision landing.<BR>􀃆 Honeywell.com<BR>Current GNSS Augmentation1<BR>GNSS Compass GPS (SPS) Galileo GLONASS<BR>WAAS (USA)<BR>CDGPS2 (C d )<BR>SBAS NA<BR>Canada)<BR>EGNOS (Europe)<BR>MSAS3 ( Japan)<BR>EGNOS EGNOS<BR>p )<BR>QZSS3 (Japan)<BR>GAGAN (India)<BR>GBAS NA SmartPathTM NA NA<BR>1. As of October 2009.<BR>2. CDGPS is not intended for aeronautical navigation applications.<BR>3. MSAS provides GPS corrections and integrity. While QZSS provides additional high<BR>elevation satellites to improve vertical accuracy.<BR>Dave Jensen/John Howard<BR>8<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>􀃆 Honeywell.com<BR>Ground Based Augmentation System<BR>Dave Jensen/John Howard<BR>9<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>􀃆 Honeywell.com<BR>GBAS Concept<BR>• Take Multiple GNSS Pseudorange Measurements<BR>– For all satellites currently in view<BR>• Determine Correction (Average Error) of each PR Measurement<BR>– Filtered, then average of PR measurements<BR>• Monitor and Detect Known Threats to GNSS Integrity<BR>– Ensure integrity of PR measurements & corrections<BR>– Alert if integrity cannot be met<BR>• VHF Broadcast Corrections & Error Bounds (Type 1)<BR>– For validated satellites only<BR>– Variance (error bound) of broadcast correction<BR>• VHF Broadcast Ground & Tropospheric Data (Type 2)<BR>– Defines region in which corrections may be safely used<BR>–Provides parameters for tropospheric adjustment<BR>• VHF Broadcast Approach Paths (Type 4)<BR>– All Final Approach Segment (FAS) data<BR>Dave Jensen/John Howard<BR>10<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>– No aircraft database required<BR>􀃆 Honeywell.com<BR>GBAS Architecture<BR>Satellite/GNSS<BR>Ground<BR>Aircraft<BR>Dave Jensen/John Howard<BR>11<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>􀃆 Honeywell.com<BR>GBAS Architecture<BR>• GBAS is Comprised of 3 Subsystems<BR>– Satellite/GNSS<BR>– Aircraft<BR>– Ground<BR>• Satellite/GNSS Subsystem<BR>– Provides satellite status, position and timing signal<BR>– Has sufficient number of satellites to determine user position<BR>• Aircraft Subsystem<BR>– Applies broadcast pseudorange corrections (PRC’s)<BR>• Computes troposphere adjustment<BR>– Computes position using corrected PR’s only<BR>– Computes deviations from broadcast approach path<BR>– Determines if GLS approach is possible (safe)<BR>– Follows desired approach path to decision height (200 ft)<BR>• Runway visible – continue with GLS approach<BR>• Runway not – Dave Jensen/John Howard<BR>12<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>visible execute missed approach<BR>􀃆 Honeywell.com<BR>GBAS Ground Subsystem<BR>• Ground Subsystem Provides<BR>– Pseudorange corrections for each satellite in view<BR>• With error bound<BR>– System (aircraft) integrity<BR>• Protects aircraft against satellite and/or signal errors<BR>• Protects aircraft against anomalous ionospheric errors<BR>• Protects aircraft against ground subsystem errors<BR>– Approach paths<BR>• Final Approach Segment (FAS) for all runway ends<BR>• No aircraft approach database required<BR>– Local tropospheric parameters<BR>• Necessary to compute aircraft tropospheric adjustment<BR>– Predicted availability<BR>• Availability for precision approaches in next 30 minutes<BR>• Estimates aircraft protection levels against alert limits<BR>Dave Jensen/John Howard<BR>13<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>Single GBAS provides all approaches for an entire airport.<BR>􀃆 Honeywell.com<BR>Augmented GPS Performance1<BR>System Direction<BR>Accuracy<BR>(95%)<BR>Protection Levels<BR>(95%)<BR>GPS2<BR>(Global)<BR>Horizontal<BR>Vertical<BR>2.55 m<BR>4.55 m<BR>50 – 100 m<BR>100 – 200 m<BR>WAAS3 H i t l 0 70 11 16<BR>(CONUS)<BR>Horizontal<BR>Vertical<BR>0.70 m<BR>1.20 m<BR>– m<BR>19 – 31 m<BR>GBAS Horizontal<BR>< 0 50 1 – 3 (Airport)<BR>Vertical<BR>0.50 m<BR>< 0.50 m<BR>m<BR>3 – 5 m<BR>1. Contribution to user position error.<BR>2. April 2009 GPS SPS Performance Report.<BR>3. July 2009 WAAS Performance Report.<BR>Dave Jensen/John Howard<BR>14<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009<BR>GPS satellites are ~25,000 km from user!<BR>􀃆 Honeywell.com<BR>Recap<BR>• Global Navigation Satellite Systems (GNSS) Provide Position,<BR>but not Integrity<BR>– Up to 10 m position error<BR>– Aircraft use RAIM to determine integrity<BR>• GNSS Augmentation Improves Accuracy & Provides Integrity<BR>– Continent (SBAS), Airport (GBAS), Aircraft (ABAS)<BR>• GBAS provides Accuracy, Integrity & Approach Paths<BR>– Only GBAS provides accuracy, integrity, availability for precision landing<BR>• GBAS can Achieve 0.50 m Accuracy (95%)<BR>– Aircraft Protection Levels 1 to 5 m<BR>• Questions?<BR>Dave Jensen/John Howard<BR>15<BR>CAAC New Technology Seminar – GBAS 29-30 October 2009
支持
支持!正对此感兴趣!:@xiexie!!!!!!!!!!!!!
xiexie!!!!!!!!!!!!! 很想看看是什么内容 谢谢,先看看good
very useful to me , thank you!confused
why the google link to controller arrangement for hilstone is connected to this page? Introduction_Honeywell Good!Thanks!
页:
[1]
2