Generalized Automatic and Augmented Manual Flight Control
**** Hidden Message ***** <P>Generalized Automatic and Augmented<BR>Manual Flight Control<BR>Anthony A. Lambregts<BR>FAA Chief Scientist Flight Guidance and Control<BR>Tony.Lambregts@FAA.gov<BR>Tel 425-917-6581<BR>Berlin Technical University Colloquium May 19, 2006<BR>Overview<BR>• Automatic Flight Controls - State of the Art<BR>• automation issues<BR>• incident and accidents<BR>• requirements<BR>• traditional design process<BR>• man-machine interfaces<BR>• FAA Safety Role<BR>• Regulations & Certification; FAR updates - high lights<BR>• Generalized MIMO Control<BR>• Total Energy Control System (TECS)<BR>• Total Heading Control System (THCS)<BR>• Condor Application<BR>• Fly By Wire Augmented Manual Control<BR>State of the Art<BR>Flight Guidance & Control<BR>throttle<BR>δe<BR>stick display<BR>servo<BR>Engine<BR>Airplane<BR>ΔT<BR>sensors<BR>clutch<BR>clutch<BR>servo<BR>Autopilot<BR>Autothrottle FADEC<BR>Actuator<BR>Automation Safety<BR>Accidents & Incidents<BR>• China Airlines B747 spiral dive after engine failure<BR>• China Airlines A300 crash at Nagoya, Japan<BR>• Air Inter A320 crash near Strasbourg, France<BR>• American Airlines B757 crash neat Cali, Columbia<BR>• Tarom A310 crash near Bucharest, Rumania<BR>• Air France A320 crash near Habsheim France<BR>• Britannia Airways B757 speed loss during FLCH<BR>• British Airways B747 speed loss during FLCH<BR>• Airbus A330 crash near Toulouse, France<BR>• Pilot fails to monitor autopilot operation (Mexicana DC10)<BR>Autopilot stalls airplane<BR>• A/P roll control saturation, engine out (China Airlines B747)<BR>• unexpected high altitude automatic disengage, out-of-trim,<BR>pilot over controls (MD11)<BR>• imperceptible airplane slow roll response, due to A/P<BR>sensor failure without proper alert (Evergreen 747)<BR>• A/P reaches roll authority limit in icing, / disconnects<BR>without timely warning, stall (Embrair Comair, Detroit)<BR>• Pilot tries to take manual control, A/P remains engaged,<BR>overrides pilot (China Airlines A300, Nagoya)<BR>• Pilot overcontrols rudder, after mild Wake Vortex<BR>encounter. Vertical Stabilizer fails (AA A300, New York)<BR>Accident and Incidents<BR>Scenarios<BR>Typical Transport Airplane<BR>Flight Guidance & Control System<BR>as many as 8 LRUs<BR>Triple<BR>FMS<BR>• Mission Planning<BR>• Navigation<BR>• Performance<BR>Autothrottle<BR>Yaw Damper<BR>Dual<BR>Single<BR>Dual<BR>• Thrust<BR>Rating<BR>• Thrust Limiting<BR>• Flare Retard<BR>• highly complex designs<BR>• historically evolved subsystems<BR>• extensive functional overlap<BR>• operational inconsistencies<BR>• incomplete envelope<BR>protection<BR>• SISO control<BR>• little or no<BR>standardization<BR>• Altitude<BR>• Heading<BR>• V-Path<BR>• Speed • H-Path<BR>• Vert. Spd<BR>Autopilot<BR>• Envelope • Autoland<BR>Protect.<BR>• role and expectations of pilot in automated aircraft<BR>• automation - should not induce false sense of security<BR>• pilot expects basic operational safety<BR>• crew difficulty of keeping abreast of automatic operations<BR>• operational complexities: current designs not pilot-like<BR>• situation awareness :<BR>• mode annunciation /caution and warnings<BR>• recognizing / managing abnormal conditions<BR>• predictability: when, how, why things happen<BR>• mixing manual & automatic can defeat basic safety features<BR>• design<BR>• SISO control modes: can result in loss of control<BR>• poor man-machine interfaces<BR>• correct level of automation: keeping pilot “in the loop”<BR>• adequacy of initial and recurrent training<BR>Automation Safety Issues<BR>Operational Complexity<BR>• Who is in control? The pilot, FMS, autopilot, autothrottle?<BR>• too many overlapping systems, modes , sub modes<BR>• what is the system doing, what will it do next?<BR>• crew confusion!<BR>• inconsistent operations and performance:<BR>• different modes, different results: automation surprises!<BR>• complex mode logic, e.g. Flight Level Change, VNAV<BR>• unsuitable man-machine interfaces,<BR>• e.g. attention/ procedure intensive CDU keyboard<BR>• inadequate mode annunciation /caution and warnings<BR>• when should pilot intervene, or take over<BR>• pilots putting too much trust in low integrity single<BR>channel designs, not aware their limitations<BR>Design Complexity<BR>• historic systems evolution has led to<BR>• new functions added-ons with each generation<BR>• e.g. GLS on 737 NG: 11 LRUs involved!<BR>• old problems “solved” by new modes / submodes<BR>• e.g. Flight Level Change, VNAV, Thrust modes<BR>• automation fragmentation into subsystems<BR>• autopilot, autothrottle, FMS, SAS, FBW<BR>• each subsystem handled by different organization<BR>• design of each function approached as new problem<BR>• SISO control : integration difficulties<BR>• modes / sub modes cobbled together by intractable<BR>mode logic<BR>• mix of old and new technologies<BR>• digital hardware with analog architectures!<BR>• no overall design & integration strategy!<BR>Design Requirements “Creep”<BR>on a Recent AFCS Program<BR>Successive Spec Revisions…..<BR>B-777 Avionics Architecture<BR>Flight Guidance and Control<BR>Design Process<BR>• 100 year evolution of systems & subsystems<BR>• more capabilities with each generation<BR>• most functions “Non-Flight Critical”<BR>• only Autoland and manual control<BR>considered “Flight Critical”<BR>• new technologies/ old control strategies<BR>• analog to digital / mechanical to FBW<BR>• introduction of Augmented Manual Control<BR>• Single Input / Single Output retained<BR>• no certified Multi-Variable designs<BR>• Major Issues:<BR>• outdated Requirements and Design Approaches<BR>Single-Axis SISO Control<BR>• Single axis SISO automatic control modes have<BR>been the standard since earliest days of automation<BR>• It works…. most of the time, however….<BR>• stability and performance cannot be guaranteed:<BR>• loss of control possible, e.g. vert path modes<BR>• full time pilot monitoring required!<BR>•SISO control is root-cause of most automation complaints<BR>• single controller input not only changes intended variable, but also<BR>causes unintended responses of other variables:<BR>• need other controller inputs to suppress unintended control<BR>coupling errors<BR>• poor damping, high control activity<BR>• mode proliferation & complexities, operational inconsistencies and<BR>pilot confusion<BR>BASIC AIRPLANE CHARACTERISTICS:<BR>THRUST AND DRAG AS FUNCTION OF SPEED<BR>Trust,<BR>Drag<BR>Speed<BR>Trim Drag<BR>Speed<BR>Power<BR>Setting<BR>Thrust<BR>Point of<BR>Neutral Stability<BR>Front<BR>Side<BR>Back<BR>Side<BR>Stall<BR>Speed<BR>Stable T P<BR>Unstable<BR>Trim Point<BR>• Generalized all-encompassing MIMO control strategy for<BR>all automatic and augmented manual modes<BR>• up-front integration of functions<BR>• pitch/thrust control<BR>• roll/yaw control (including rudder) - inherent<BR>• yaw damping /turn coordination<BR>• thrust asymmetry compensation<BR>• improved failure detection, identification and isolation<BR>• envelope protection<BR>• airspeed, normal load factor, angle of attack, roll angle<BR>FUTURE SYSTEMS REQUIREMENTS<BR>• large cost reductions, achievable through<BR>• reduced system complexity, less maintenance<BR>• faster system development cycle<BR>• design reusability- lower risk<BR>• reduced customization<BR>• standard off-the-shelf hardware<BR>• less lab/flight testing<BR>• reduction in pilot training need<BR>• automation safety improvements<BR>FUTURE FG&C SYSTEMS DESIGN OBJECTIVES<BR>FG&C<BR>• Airspeed/ Mach<BR>• Altitude/Vertical Spd<BR>• Heading/Track<BR>• Loc / GS, V-Nav / L-Nav<BR>• Envelope Protection<BR>• FBW Manual Mode<BR>Tactical Automatic &<BR>FBW augmented manual<BR>Control Modes and<BR>Safety Functions<BR>FMC<BR>Flight planning<BR>• Navigation<BR>• Path Definition<BR>• Performance Predict.<BR>Strategic<BR>Airline Operations<BR>CDU Oriented Functions<BR>T-NAV V-NAV L-NAV<BR>P-R-Y MANUAL<BR>340 .712 00<BR>IAS MACH ALT<BR>HOLD<BR>ALT FPA TRACK HEAD<BR>ACQ<BR>0.0 137 135<BR>THRUST MANUAL<BR>GA<BR>VAR 24500 VARIABLE<BR>GS LOC<BR>VMAX<BR>VMIN<BR>• Rational Function<BR>Partitioning<BR>• No Function Overlap<BR>• Common Control Strategy<BR>• Simplified Reusable Design<BR>Control Targets<BR>MCP<BR>Future FG&C System Architecture<BR>FAA Role<BR>• Safety and oversight of Aviation Safety though<BR>• Federal Aviation Airworthiness Regulations (FARs)<BR>• high level generic design requirements<BR>• some specific detailed “Special Conditions”<BR>• Aircraft Design Certification & Production oversight<BR>• Aircraft Operations and Maintenance oversight<BR>• Pilot training/licensing<BR>• cooperative safety initiatives with Industry and<BR>Research Establishments:<BR>• FAA/NASA Aviation Safety Program (ASP)<BR>• Commercial Aviation Safety Team (CAST)<BR>all have raised awareness of need for better regulations & design :<BR>• Updated FAR and AC 25.1329<BR>Updated FAR and AC 25.1329<BR>• Coverage: Autopilot, Autothrust and Flight Director (not FMS)<BR>• Key new requirements:<BR>• Vertical Modes preferred operational characteristics<BR>• engage/disengage/ mode switching transients<BR>• warning/alert for autopilot and autothrottle disengage<BR>• manual override must not create unsafe condition<BR>• significant override force should disconnect autopilot<BR>• speed envelope protection (as a minimum crew alert)<BR>• logical man-machine interfaces to minimize crew error<BR>and confusion<BR>• automatic trimming in opposition to pilot input prohibited<BR>• prevent “jack knifing” elevator/stabilizer<BR>• trim on elevator position, not stick force<BR>Generalized Functionally Integrated<BR>Multi-Axes Control<BR>• Automatic FG&C has contributed in a major way to flight safety<BR>• Future FG&C systems can further enhance flight safety, operational<BR>effectiveness and reduce system costs through<BR>• Generalized Multi-Input / Multi-Output (MIMO) control strategy<BR>• pilot-like control, used for all control modes<BR>• automatic<BR>• augmented manual<BR>• envelope protection<BR>• reduced mode complexity<BR>• fewer Up-Front integrated modes<BR>• simpler more intuitive man-machine interfaces<BR>• Mode Control Panel (MCP)<BR>• advanced displays ( e.g. SVS Terrain, HITS, FPA symbology<BR>Generalized Control Concept<BR>Targets<BR>Feedback Signal<BR>Synthesis<BR>Airplane<BR>Innerloop<BR>Force and<BR>Moment<BR>Control<BR>Nav/<BR>Guid<BR>Air<BR>Data<BR>IRU<BR>Guidance<BR>Error<BR>Normalization<BR>(Any Mode)<BR>Control<BR>Commands<BR>Coordination<BR>Airplane independent design Airplane tailored design<BR>• Decoupled Control<BR>• Standard Trajectory Dynamics<BR>Designed to provide:<BR>TECS/THCS Research Project<BR>􀂄 Need for safer/more effectively integrated FG&C system was recognized<BR>in late seventies during NASA TCV program<BR>􀂄 Identified Root Cause of most FG&C System Deficiencies<BR>􀂄 Peace meal mode-by-mode systems evolution<BR>􀂄 SIS0 design<BR>􀂄 NASA /Boeing Research Program, initiated in 1979, resulted in<BR>􀂄 Total Energy Control System (TECS)<BR>􀂄 Generalized energy based MIMO Flight Path & Speed Control<BR>􀂄 Detailed system development & extensive Pilot-In-The-Loop<BR>simulator evaluations (1980-1985)<BR>􀂄 Validated by Flight Test & In-flight demonstrations (1985)<BR>􀂄 Generalized integrated lateral directional control concept was developed<BR>under DARPA/Boeing Condor program (1985-1990), resulting in<BR>􀂄 Total Heading Control System (THCS)<BR>Energy based Longitudinal Control<BR>Speed<BR>Altitude Thrust<BR>Control<BR>Elevator<BR>Control<BR>Trim<BR>Point<BR>• Responses to elevator and throttle<BR>are coupled in speed and altitude<BR>• Pilots have learned through training to<BR>decouple flight path and speed control<BR>• Current automatic control modes fail<BR>to account for this control coupling:<BR>its operation is like giving<BR>- throttle to one pilot to control speed<BR>- elevator to other pilot to control flight path<BR>γ +v􀀅/g<BR>γ −v􀀅/g<BR>• Elevator and thrust control are ~orthogonal<BR>• Throttle controls Total Energy Rate:<BR>• Elevator controls Energy Distribution: }This Energy Strategy used to<BR>achieve “pilot-like quality”<BR>in automatic control<BR>Flight Dynamics - Energy Control<BR>Relationships<BR>Drag<BR>g<BR>Thrust W v REQ = ( 􀀅 + sinγ ) + •<BR>• current autothrottles neglect largest term: Wsinγ<BR>• trim thrust in level flight is equal to Drag<BR>•<BR>• thrust changes produce<BR>• elevator produces energy redistribution<BR>• conclusion: energy is the right control integration strategy<BR>V<BR>E<BR>g<BR>W v t ( 􀀅 + sinγ ) = 􀀅<BR>2<BR>2<BR>1 V<BR>g<BR>E W h W t = ⋅ + ⋅ ⋅<BR>( − sinγ )<BR>g<BR>W v􀀅<BR>Total Energy Control System<BR>(TECS)<BR>• concept<BR>• thrust controls Total Energy requirement<BR>• elevator controls distribution of energy<BR>• result: generalized multi-input / multi-output control strategy<BR>•speed /flight path mode errors are normalized into<BR>energy quantity, fed forward to throttle and elevator:<BR>• provides decoupled command responses<BR>• consistent/energy efficient operation in all modes<BR>• control priority when thrust limits:<BR>• generally speed control has priority<BR>• exception: glide slope / flare mode<BR>• Vmin/Vmax envelope always protected<BR>• Vcmd limited to Vmin/Vmax<BR>• control authority allocation: handles complex maneuvers<BR>Generalized Integrated Automatic<BR>and Manual FBW Control<BR>MODE CONTROL<BR>PANEL<BR>FMC<BR>IRU<BR>CDU<BR>THROTTLE<BR>ELEVATOR<BR>ACTUATOR<BR>ENGINE<BR>PATH MODES<BR>FEEDBACK<BR>NORMALIZATION<BR>SPEED MODES<BR>FEEDBACK<BR>NORMALIZATION<BR>COMMANDS<BR>COORDINATION<BR>FEED FORWARD<BR>COMMANDS<BR>PROCESSING<BR>THRUST<BR>SCALING<BR>PITCH<BR>INNER<BR>LOOP<BR>INTEGRATED FLIGHT GUIDANCE<BR>& CONTROL COMPUTER<BR>C γ<BR>g<BR>v􀀅 C<BR>COLUMN.<BR>EE<BR>C<BR>ADC<BR>TECS Functional Architecture<BR>and Mode Hierarchy<BR>􀁄 􀁄<BR>􀁄<BR>􀁄<BR>􀁄<BR>􀁄<BR>􀁄 􀁄 􀁄<BR>􀁄<BR>􀁄 􀁄 􀁄<BR>􀁄 􀁄 􀁄 􀁄<BR>􀁄<BR>􀁄 􀁄<BR>Altitude<BR>Glide Slope<BR>Vert. Path<BR>IAS<BR>Mach<BR>Time Nav<BR>Flight path<BR>Angle<BR>Flare<BR>Go Around<BR>Manual FBW<BR>Vmax<BR>Vmin<BR>V<BR>.. Kh<BR>Kv 1/g<BR>V<BR>Rate<BR>Limit<BR>Rate<BR>Limit<BR>Generalized<BR>Thrust and<BR>Elevator<BR>Commands<BR>Coordination<BR>􀀅v_<BR>c<BR>g<BR>Tc<BR>V<BR>δe<BR>c<BR>Kv 1/g<BR>Kv 1/g<BR>energy control energy rate control<BR>􀁄 􀁄􀁄<BR>􀁄 γc<BR>􀁄<BR>TECS Core Algorithm<BR>Energy Rate Control<BR>Engine<BR>Control Engine<BR>(TLIM). (PATH PRIORTY)<BR>Pitch<BR>Innerloop<BR>Control<BR>Actuator<BR>KTI<BR>S<BR>KEI<BR>S<BR>KTP<BR>KEP<BR>(TLIM). (SPEED PR)<BR>2-K<BR>K<BR>+<BR>+ _ +<BR>+<BR>_<BR>+<BR>_<BR>+<BR>+<BR>+<BR>+<BR>+_<BR>+<BR>_<BR>Weight<BR>Airplane independent design Airplane tailored design<BR>T<BR>δe<BR>γ<BR>γc<BR>􀀅v_g<BR>Specific Net Thrust<BR>Command<BR>Pitch Attitude Command<BR>(typically)<BR>􀀅 v<BR>c _<BR>g<BR>(E􀀅 )<BR>Dε SN<BR>(E􀀅 )<BR>Tε SN</P><P>Control Authority Allocation<BR>Example<BR>• Maneuver Authority<BR>• During climb at Tmax , Vc /g limited to<BR>, allowing speed cmd execution by<BR>reducing climb gradient temporarily by half<BR>• During descent at Tmin , V/g is limited to<BR>, allowing speed reduction<BR>by temporary level off<BR>.5 (— + γ ) .<BR>Vg<BR>1.0 (— + γ ) .<BR>Vg<BR>= (— + γ ) .<BR>Vg<BR>.</P>
<P>Envelope Protection Functions<BR>• Airspeed: keep between Vmin and Vmax, preferably at IAScmd<BR>• Solution can get very complex in traditional systems<BR>• requires mode switching & crew alerting<BR>• Normal Load Factor (nz):<BR>• automatic modes: |nz| < .1 for passenger comfort<BR>• FBW manual mode:<BR>• 0 < nz < (nz)structural limit<BR>• low speed: nz < (nz) α-limit ; (nz) α-limit = (Ve/Vestall-1g)2<BR>• Angle of Attack (α) limit: implicit if nz and Airspeed protected<BR>• Bank Angle: bank limit depends on mode & flight condition<BR>• Sideslip (β) limiting: possible in some FBW manual designs</P>
<P>TECS/THCS Mode Control Panel Concept<BR>with Integrated ATC data link Functions<BR>Advanced Displays<BR>TECS Digital FCC / Throttle /FADEC<BR>Interface Concept<BR>Weight<BR>FCC<BR>Engine T<BR>FADEC<BR>Engine T<BR>FADEC<BR>IO<BR>Engine<BR>failure<BR>logic<BR>Tcmd<BR>throttles<BR>s s A to D<BR>servo<BR>No of<BR>oper<BR>engines<BR>Total Heading<BR>Lateral-Directional Control Strategy<BR>Design approach analogous to TECS:<BR>• aileron control sum of heading and sideslip errors<BR>• rudder controls difference between heading and sideslip errors<BR>Resulting Total Heading Control System (THCS) algorithm provides<BR>• full-time coordinated innerloop roll/yaw control (THCS Core)<BR>• yaw damping<BR>• turn coordination<BR>• engine-out thrust asymmetry compensation / δr & δa trim<BR>• envelope protection (bank angle & sideslip)<BR>• all outerloop modes<BR>• automatic modes (Heading/Track angle, LOC, LNAV)<BR>• augmented manual mode<BR>• decrab / flat turn capability<BR>• consistent performance - all modes / all flight conditions<BR>THCS Functional Architecture<BR>and Mode Hierarchy<BR>Roll Attitude<BR>Command<BR>Generalized<BR>Roll Attitude<BR>and Yaw<BR>Rate<BR>Commands<BR>Coordination<BR>+<BR>+<BR>+_<BR>+_<BR>+_<BR>+_<BR>+_ 􀁄 􀁄 􀁄<BR>Drift<BR>Angle<BR>Corr<BR>Heading<BR>Command<BR>􀁄 􀁄 􀁄<BR>􀁄 􀁄 􀁄<BR>L-Nav<BR>Loc<BR>Kψ<BR>Sideslip Kβ<BR>Command<BR>ψ<BR>β<BR>􀁄 􀁄<BR>􀁄<BR>􀁄<BR>Ky<BR>V<BR>Yaw Rate<BR>Command<BR>ψ<BR>c<BR>β c<BR>Track Angle<BR>Command<BR>ψ .<BR>β .<BR>..<BR>Cross Track<BR>Deviation<BR>Cross Track<BR>Velocity Cmd<BR>Track Angle<BR>Command<BR>THCS Core Algorithm<BR>+ _+<BR>_<BR>+<BR>_ +<BR>_<BR>+<BR>_<BR>+<BR>+<BR>Kψ<BR>Kβ<BR>f(q )c<BR>g<BR>VTrue<BR>g<BR>VTrue<BR>VTrue<BR>g<BR>KRI<BR>S<BR>KYI<BR>S<BR>Kφ<BR>Kψ􀀅<BR>K p<BR>+<BR>_<BR>φ p<BR>ψ􀀅<BR>ψ􀀅<BR>+<BR>_<BR>ψ<BR>ψc<BR>+<BR>_<BR>β<BR>β<BR>c<BR>Airplane independent design Airplane tailored design<BR>f(q )c<BR>Actuator<BR>Actuator<BR>δa<BR>δr<BR>φc<BR>􀀅ψc<BR>􀀅 βc<BR>il<BR>􀀅 β<BR>􀁄 􀁄<BR>􀁄<BR>􀁄<BR>-1<BR>-1<BR>ψ􀀅col<BR>TECS and THCS Application on Condor</P>
<P> </P>
<P> </P>
<P> </P>
<P> </P>
<P> </P>
<P> </P>
<P> </P>
<P>The Condor Team<BR>Fly-By-Wire Design<BR>• Definition: Airplane control concept whereby surfaces commanded<BR>through electrical wires<BR>• Sought benefits:<BR>– Weight reduction – elimonation of mechanical systems<BR>– Drag reduction - Optimized aerodynamic performance by Relaxed<BR>Static Stability<BR>– Standardized / improved handling qualities through SAS and CAS<BR>– Cost reductions<BR>• Improved fuel economy<BR>• Reduced pilot training (common type rating)<BR>• Design commonality/design cycle time reduction<BR>• Reduced maintenance<BR>FBW Functional Architecture<BR>throttle<BR>actuator<BR>engine<BR>δe<BR>Airplane<BR>ΔT<BR>FLIGHT<BR>CONTROL<BR>COMPUTER<BR>display<BR>Inter<BR>face<BR>trim<BR>up<BR>down<BR>actuator δS<BR>stick<BR>feel system<BR>FBW Design Opportunities<BR>• simplify operations concept<BR>• simplify hardware architecture and design<BR>• shedding historically accumulated “baggage”,<BR>e.g. design features typically belonging to<BR>previous generations of technologies:<BR>• complex feel systems<BR>• column, wheel back-drive systems<BR>• stick shaker, stick pusher<BR>• individual actuator loop closure - Force Fight<BR>• Instead of designing Band-Aids to make it possible for the<BR>pilot to live with the vagaries in the system, the FBW system<BR>should eliminate these vagaries (and Band-Aids)<BR>Major FBW Design Issues<BR>• Controllers - Column & Wheel versus Sidestick<BR>• Feel system - Passive (e.g. spring) or Active (expensive !)<BR>• Control augmentation - Algorithm response type<BR>• simple or none - little or no HQ advantages<BR>• stability/command – substantial benefits possible<BR>• more complex/costly – many issues<BR>• Handling Qualities: what HQ, how best achieved<BR>• envelope protection - major safety benefit !<BR>• Good design enhances pilot control authority<BR>• mode changes takeoff/landing<BR>• Actuators: loop closure, e.g. central or remote loop closure<BR>• Redundancy architecture & component reliability<BR>Handling Qualities<BR>Definition: The conglomerate of characteristics and features<BR>that facilitate the execution of a specific flight<BR>control task; includes display and feel characteristics<BR>• good HQ requires design attributes appropriate to control<BR>task (e.g. pitch attitude, FPA, or altitude control)<BR>• each task has a finite time allotment or expectation for<BR>its completion (bandwidth requirement)<BR>• direct control of “slow variables” requires special design<BR>attributes (e.g.FPA response augmentation & display)<BR>• control harmony is achieved when the pilot can execute<BR>the task without undue stress and conscious effort<BR>FBW Control<BR>Response Attributes for Good HQ<BR>Desired Attributes:<BR>• “K/S”- like response<BR>• low response lag τ<BR>• correct sensitivity K<BR>• good damping<BR>• no overshoot<BR>• control harmony with<BR>other variables (θ, γ, nz)<BR>• consistency between<BR>flight conditions<BR>Time<BR>Response<BR>Theta, FPA<BR>Input δcol<BR>Sensitivity (slope)<BR>Lag τ<BR>KS<BR>NOTE: signal δcol can serve as the cmd reference KS<BR>FBW Control Algorithm Types<BR>• Pitch:<BR>• pitch attitude rate command (+ pitch attitude hold)<BR>• nz-command<BR>• proportional angle of attack (AOA) command<BR>• C*= nz command / Vertical Speed hold<BR>• FPA rate command / FPA hold<BR>• Roll: roll rate command / roll attitude hold<BR>+ heading or track hold for bank angle < Xo<BR>• Yaw: sideslip command proportional to pedal<BR>Given sufficient know-how, all of these concepts can be<BR>made to perform well : the devil is in the details!<BR>Basic FBW System Example<BR>Embraer RJ-170 / DO-728 concept<BR>stick<BR>δe<BR>Air Data<BR>Actuator Actuator<BR>Electronics<BR>Pos sensor<BR>Modular<BR>Avionics<BR>Units<BR>Passive Feel<BR>Default<BR>Gains<BR>IRU<BR>Airspeed Gain Sched<BR>AOA limiting<BR>default<BR>Autopilot<BR>servo<BR>clutch<BR>Autopilot cmds<BR>Raytheon Low Cost GA FBW Concept<BR>Bonanza Flight Demo System<BR>throttle<BR>servo<BR>engine<BR>δ e<BR>Airpl<BR>FCC ΔT<BR>display<BR>stick<BR>Decoupled<BR>Control<BR>Algorithm<BR>sensor<BR>sensor<BR>clutch<BR>clutch<BR>servo<BR>Vcmd<BR>FPAcmd<BR>• Stick commands proportional FPA; Throttle commands speed<BR>Trim<BR>Down<BR>Up<BR>Rationale For Low End GA FBW<BR>• Eliminate most low pilot skill related accidents<BR>• stall, spin<BR>• Loss of Control due to spatial disorientation<BR>• Lack of IMC flight skills (inadvertent weather)<BR>• Accept new FBW system related accidents, but lower overall rate<BR>Approach:<BR>• embedded envelope protection functions<BR>• low cost FBW design strategy:<BR>• simple control algorithm<BR>• simple high reliability components<BR>• dual sensor set, computer and data bus<BR>• basic redundancy and FDIR strategies, e.g.<BR>• single servo on split surfaces<BR>C* Design Concept<BR>KS<BR>KI<BR>S<BR>act.<BR>engine<BR>Vc o<BR>g<BR>throttle<BR>+_<BR>nz pilot<BR>q<BR>++<BR>stick<BR>FF<BR>shaping<BR>δe<BR>ΔT<BR>Airplane<BR>ACE<BR>FCC<BR>comp<BR>C*<BR>C*cmd<BR>C* Morphed into FPA rate cmd/hold<BR>• responses identical to original C*, if gains are equivalent<BR>• fewer, simpler sensors<BR>• no pilot-out-of-the-loop control reference drift<BR>• still need extensive flight condition tuning<BR>• missing: integral control of γ-error<BR>actu<BR>engine<BR>throttle<BR>q<BR>δ e<BR>ΔT<BR>Airplane<BR>Kq<BR>KFF<BR>Kθ<BR>stick<BR>θ<BR>γ<BR>cmd γ<BR>K γ<BR>+<BR>Prefilter<BR>KI<BR>S<BR>_ +_ ++_<BR>Augmented Manual Control Algorithm<BR>Design Objectives<BR>• produce a generalized reusable design with<BR>• generic innerloop, shared with automatic modes<BR>• integral feedback control, to prevent response droop<BR>• final dynamics = classical airplane with ideal constant speed HQ:<BR>• no undesirable response variability with flight condition<BR>• responses decoupled from airspeed - by autothrust<BR>• tracking of Control Reference when pilot out of the loop, e.g.<BR>• pitch/roll attitude<BR>• flight path angle (preferred – minimizes workload)<BR>{(1/ω )S (2 / ω )S 1}(τ S 1)<BR>(τ S 1)(τ S 1)<BR>S<BR>K<BR>{(1/ω )S (2ζ /ω )S 1}<BR>(τ S 1)<BR>S<BR>K<BR>δ<BR>θ<BR>SP SP d<BR>2 2<BR>SP<BR>stick n1 n2<BR>SP SP<BR>2 2<BR>SP<BR>stick n<BR>stick + + +<BR>+ +<BR>=<BR>+ +<BR>+<BR>=<BR>ζ<BR>{(1/K K K )S (1/K K )S (1/K )S 1}(τ S 1)<BR>(K S K S 1)<BR>S<BR>K<BR>δ<BR>γ<BR>I θ2<BR>2<BR>θ I<BR>3<BR>q θ I<BR>FFI<BR>2<BR>stick FFP<BR>stick + + + +<BR>+ +<BR>=<BR>Proposed Design Methodology for<BR>FBW Control Algorithms<BR>Desired:<BR>• systematic/reliable process, producing desired results:<BR>• generalized/reusable design – minimal application & Flt Condition<BR>adaptation<BR>Approach:<BR>Step 1: Stability Augmentation using Static Inversion<BR>􀂃 eliminates flight condition dependencies, gain schedules<BR>􀂃 defines basic SP innerloop characteristics: ω, ζ<BR>Step 2: Add Integral Feedback loop<BR>􀂃 “retrims” airplane - eliminates SS command response droop<BR>Step 3: Add Command Augmentation Feed Forward Paths<BR>􀂃 shapes response to pilot control inputs, as desired<BR>􀂃 provides “Hold” function for pilot established command<BR>TECS FPA Control Algorithm<BR>Implementation<BR>stick<BR>δe<BR>Airplane<BR>Invariant<BR>Short Period<BR>design 1<BR>1<BR>2<BR>θ S + τ<BR>FPA<BR>γ<BR>KStick S<BR>1<BR>γc<BR>γc<BR>.<BR>Pitch rate<BR>Pitch attitude<BR>Feed Forward<BR>Control Augmentation<BR>Static θ<BR>Inversion<BR>FPA<BR>Feedback<BR>Control<BR>Augment.<BR>Short<BR>Period<BR>Dyn.<BR>γ<BR>Pilot Induced Oscillation<BR>Avoidance<BR>• pilot in the loop control requirements<BR>• bandwidth - appropriate to the task<BR>• response predictability<BR>• linearity highly desirable<BR>• suitable controller forces & displacements<BR>• display(s) – appropriate to pilot task<BR>• overall system design harmony - need<BR>• adequate control algorithm bandwidth<BR>• adequate actuator bandwidth and rate limits<BR>• correct controller sensitivity & authority<BR>• matching of front-end and back-end design<BR>• display dynamics appropriate for pilot loop closure<BR>Questions??</P> 什么内容的呀? 好东西。 谢谢。
顶
需要这个资料<br>回复 1# 航空 的帖子
Thx。。。。。。
页:
[1]