Alternative Obstacle Clearance Criteria for RNP RNAV Instrument Approaches
**** Hidden Message ***** © 2004 The MITRE Corporation. All Rights Reserved.<BR>Alternative Obstacle Clearance Criteria for<BR>RNP RNAV Instrument Approaches<BR>S.V. “Vince” Massimini, DSc<BR>Frederick A. Niles<BR>April 2004<BR>2<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Obstacle Clearance Surfaces (OCSs)<BR>Instrument Landing System (ILS)<BR>3<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>OCSs for ILS<BR>4<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Vertical OCSs<BR>Not to Scale<BR>200'<BR>Touchdown Elevation<BR>-<BR>954' 2,379' 1,237' 7,983'<BR>3 Glide slope o<BR>185' HAT<BR>250' HAT<BR>668' HAT<BR>954' 1,154' 3,533' 4,770' 12,753'<BR>34:1 ILS/GLS<BR>5<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Determining Visibility Minima<BR>HAT = 326 ft<BR>Glide Slope = 3º<BR>Threshold Crossing Height = 50 ft<BR>954 ft 5280 ft = 1 sm<BR>3960 ft=3/4 sm<BR>HAT = 257 ft<BR>1. Determine Height Above Touchdown (HAT) from OCS<BR>2. Determine visibility from distance of HAT point to runway threshold<BR>3. Approach lights can affect visibility<BR>Not to Scale<BR>6<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Wide Area Augmentation System (WAAS)<BR>GPS Satellites<BR>Communication Satellite<BR>(with WAAS transponder)<BR>Ground Earth<BR>Stations<BR>Wide Area<BR>Master Station<BR>Wide Area<BR>Reference Station<BR>GPS<BR>WAAS<BR>Correction<BR>Terms,<BR>Integrity Data<BR>GPS-Like<BR>Signals<BR>7<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Local Area Augmentation System (LAAS)<BR>Global Positioning System<BR>VHF Data Broadcast<BR>LAAS Differential Receiver Stations<BR>Correction Terms, Integrity Data<BR>LAAS Differential Transmitter Station<BR>GPS Satellites<BR>GPS Satellites<BR>Surveyed<BR>Antenna<BR>All elements sited on airport property<BR>Local Area<BR>Augmentation System<BR>GPS/LAAS<BR>User Equipment<BR>8<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GPS/WAAS/LAAS Approaches<BR>Area Navigation (RNAV) Approaches<BR>• WAAS intent has been to provide several levels of service for instrument<BR>approaches<BR>– Lateral Navigation (LNAV)<BR>• No vertical guidance (Non-precision Approach)<BR>– Lateral/Vertical Navigation (LNAV-VNAV) and Barometric/Vertical<BR>Navigation (BARO-VNAV)<BR>• Comparable performance to NPA lateral guidance and vertical guidance using<BR>barometric altimeter<BR>• Requires WAAS or GPS-BARO/VNAV (no DME/DME in USA)<BR>• Best theoretical HAT is 250 ft (rarely attained)<BR>– LPV<BR>• “Near CAT I service”<BR>• Best LPV minima: 250 ft HAT<BR>9<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GPS/WAAS/LAAS Approaches (Concluded)<BR>• LAAS (and future WAAS with dual frequency)<BR>– GNSS Landing System (GLS)<BR>• Equivalent of ILS CAT I<BR>• Best GLS/ILS Cat. I minima: 200 ft HAT<BR>LNAV/BARO-VNAV 350’<BR>LPV-1 250’<BR>GLS/ILS 200’<BR>3o<BR>10<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Display Sensitivity of GLS/LPV<BR>Approaches<BR>MAWP<BR>Not to scale<BR>Reference: DO 229C (WAAS MOPS)<BR>11<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNAV OCSs<BR>• Although the navigation error is generally constant<BR>throughout the approach for RNAV systems, the<BR>increase in display sensitivity results in progressively<BR>smaller total errors as the aircraft approaches the<BR>runway/NAVAID<BR>• Resultant RNAV OCSs are<BR>– GLS: Identical to ILS<BR>– LPV (APV I):<BR>• Horizontal is identical to ILS<BR>• Vertical is more conservative (closer to ground) to account for<BR>reduced vertical integrity<BR>12<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP RNAV<BR>• RNP RNAV has potential benefits in the oceanic, en<BR>route, terminal, and approach domain<BR>– RNP-10 implemented in oceanic airspace<BR>• Reduced route separation<BR>– RNP approaches developed at some airports in Alaska<BR>• Significant airport access benefits attained<BR>• Focus of this discussion will be the final approach<BR>segment<BR>13<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP RNAV Approaches<BR>• RNP RNAV assumes constant display sensitivity and<BR>constant navigational errors<BR>– Nearly constant total flight errors approaching the runway<BR>• Currently use BARO-VNAV vertical profile<BR>– Other profiles are under investigation<BR>• RNP-.3 can be flown with GPS, WAAS, or LAAS<BR>avionics<BR>– RNP-.3 using DME/DME currently not authorized in USA<BR>• RNP RNAV below .3 will require Special Aircraft and<BR>Aircrew Authorization Required (SAAAR)<BR>– Additional certification, equipment, and training<BR>14<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>2 x RNP Primary Area each side of centerline<BR>1 x RNP Secondary Area<BR>1 x RNP Secondary Area<BR>1 x RNP 1 x RNP<BR>2 x RNP 2 x RNP<BR>Required Navigation Performance (RNP<BR>RNAV)<BR>Not to Scale<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>The GPS Approach Minima<BR>Estimator (GAME) Model<BR>16<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GAME Objectives<BR>• Computer model developed to provide objective estimates<BR>of benefits of IAPs<BR>• Digital airport, terrain and obstacle data<BR>• Simplified approach design criteria<BR>– Straight-in approach with five mile final<BR>• No intermediate segment<BR>• Variable glide-slope possible, but only 3 degrees slope presented<BR>– Missed approach only for GLS/ILS<BR>• Simplified missed approach<BR>17<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GPS Approach Minima Estimator<BR>(GAME) Model<BR>Minima Estimation<BR>Software<BR>Repeat for Thousands<BR>of Runway Ends<BR>Approach<BR>Design Criteria<BR>Generate Statistics<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>-0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75<BR>LNAV/VNAV Visibility - LNAV Visibility (sm)<BR>Terrain<BR>Data Base<BR>Obstacle<BR>Data Base<BR>Airports<BR>Data Base<BR>18<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GAME Airports:<BR>1534 airports and 5073 runway ends<BR>CONUS: 1429<BR>Alaska: 104<BR>Hawaii: 1<BR>19<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Instrument Approach HATs<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>3000<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obs tacle s Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>GLS/ILS<BR>LPV<BR>LNAV/VNAV<BR>RNP .3<BR>RNP .1<BR>20<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Observations<BR>• ILS, GLS, and LPV dominate the lowest visibility minima<BR>• Even RNP RNAV with SAAAR has increased approach<BR>minima at most runways relative to ILS/GLS/LPV<BR>– Some runways will exhibit improved minima<BR>• E.g., Runways in Alaska noted previously<BR>– Despite additional certification, equipment and training<BR>requirements<BR>• Why do the RNP RNAV approaches show reduced<BR>benefits?<BR>– Investigate effect of removing secondary areas from OCSs<BR>– Investigate effect of curved approaches (short finals)<BR>• 3 nm length of final<BR>21<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP-.3 and LNAV/VNAV-BARO/VNAV<BR>With Secondary Areas<BR>+ .6 nmi wide<BR>.3 nmi wide<BR>LNAV/VNAV Primary and<BR>Secondary Areas<BR>RNP-.3 Primary and<BR>Secondary Areas<BR>22<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP-.3 and LNAV/VNAV-BARO/VNAV<BR>No Secondary Areas<BR>+ .6 nmi wide<BR>LNAV/VNAV Primary and<BR>Secondary Areas<BR>RNP-.3 Primary Area<BR>23<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Effect of Secondary Areas<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obstacles Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>RNP .3<BR>RNP .3 No Secondary<BR>RNP .1<BR>RNP .1 No Secondary<BR>24<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Effect of Short Finals (Curved Approaches)<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obstacles Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>RNP-.3 Short Final<BR>RNP-.3 Normal Final<BR>RNP-.1 Short Final<BR>RNP-.1 Normal Final<BR>25<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Observations<BR>• Removal of secondary areas and use of short finals has<BR>some effect at some runways, but RNP RNAV<BR>performance is still not comparable to ILS, GLS or<BR>LPV<BR>• Why?<BR>26<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>ILS/GLS/LPV -----<BR>RNP-.1 -----<BR>-5000<BR>-3000<BR>-1000<BR>1000<BR>3000<BR>5000<BR>0 6000 12000 18000<BR>Distance from RWT (ft)<BR>Distance from C/L (ft) Distribution of Controlling Obstacles<BR>5000+ LNAV/VNAV Approaches<BR>27<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Narrow RNP RNAV OCSs<BR>• Suppose we narrow the RNP RNAV OCS significantly<BR>• Example:<BR>– ILS/GLS/LPV OCS is + 400 ft wide near the runway threshold<BR>– Let 2 x RNP = 400 ft 􀃎 RNP = 200 ft/6076 ft/nm = .033 nm<BR>• No secondary areas<BR>2 x RNP<BR>Not to Scale<BR>28<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Effect of RNP-.033<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>3000<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obstacles Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>GLS/ILS<BR>LPV<BR>LNAV/VNAV<BR>RNP .033 No Secondary<BR>29<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Observations<BR>• Even with significantly reduced RNP values, the RNP<BR>minima are still not comparable to ILS. GLS, or LPV<BR>• “Culprit” must be the vertical OCS<BR>• As an example, suppose we use the GLS vertical OCS<BR>200'<BR>Touchdown Elevation<BR>34:1 ILS/GLS<BR>27:1 LPV<BR>23:1 RNP/BARO-LNAV/VNAV<BR>954' 2,379' 1,237' 7,983'<BR>3 Glideslope o<BR>185' HAT<BR>250' HAT<BR>668' HAT<BR>954' 1,154' 3,533' 4,770' 12,753'<BR>Not to Scale<BR>30<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Effect of GLS Vertical OCS on RNP RNAV<BR>Note: Normally RNP is restricted to 250 ft HAT<BR>minimum. For GLS vertical, a minimum of 200 ft HAT is assumed.<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>3000<BR>3500<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obstacle s Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>GLS/ILS<BR>LPV<BR>LNAV/VNAV<BR>RNP-.033 No Secondary<BR>RNP-.1 No Secondary<BR>RNP-.3 With Secondary<BR>31<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Observations<BR>• The use of the improved vertical OCS produced lower<BR>minima for RNP RNAV approaches<BR>– ILS/GLS OCS only proposed as an example<BR>• Complexity of certification for small RNP values (such<BR>as RNP-.033) is unknown<BR>– RNP-.1 will still require SAAAR<BR>• Increased certification, equipment, and training costs<BR>• RNP RNAV and SAAAR will certainly be beneficial at<BR>some airports, but it is clear that there will be no<BR>substantial benefit over ILS, GLS or even LPV at most<BR>airports<BR>• Is there a less costly/easier way to attain good minima<BR>at most airports?<BR>32<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Hybrid Approaches<BR>• It may be possible to combine RNP, GLS, and/or LPV<BR>into a single hybrid approach, where RNP RNAV<BR>criteria are used far from the runway, and the aircraft<BR>transitions to a GLS or LPV approach near to the<BR>runway<BR>– Possible application using ILS also<BR>• Such approaches should avoid the extra certification,<BR>equipment, and training of SAAAR<BR>• What would the benefits be of such approaches?<BR>33<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP-.1 and ILS/GLS/LPV Hybrid<BR>Horizontal Depiction<BR>-5000<BR>-3000<BR>-1000<BR>1000<BR>3000<BR>5000<BR>6000 12000 18000<BR>Distance from RWT (ft)<BR>Distance from C/L (ft)<BR>34<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Hybrid RNP/GLS and RNP/LPV<BR>Approaches<BR>0<BR>500<BR>1000<BR>1500<BR>2000<BR>2500<BR>3000<BR>200 (.75)<BR>250-257(.75)<BR>258-327 (1.0)<BR>328-395 (1.25)<BR>396-465 (1.5)<BR>466-534 (1.75)<BR>535-603 (2.0)<BR>604-740 (2.25)<BR>More<BR>Obstacles Prevent<BR>HAT (ft) (No-light Visibility (sm))<BR>Number of Runways<BR>RNP-.3 w/Secondary<BR>GLS/ILS<BR>RNP-.3/GLS/ILS Hybrid<BR>LPV<BR>RNP-.3/LPV Hybrid<BR>35<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Observations<BR>• Application of current RNP RNAV approach criteria will<BR>result in higher minima at most airports in comparison to<BR>ILS, LAAS or WAAS-based approaches<BR>– Some airports will benefit, but most will have higher minima<BR>• Improvement of the vertical profile of RNP RNAV offers<BR>significant benefit with respect to approach minima<BR>– GLS vertical OCS investigated in this paper<BR>• Hybrid RNP RNAV and LAAS/WAAS approaches<BR>appear to have excellent capability to achieve the benefits<BR>of RNP and low approach minima while avoiding the<BR>costs of SAAAR<BR>– RNP to GLS and LPV investigated in this paper<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Backup Slides<BR>37<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>Instrument Approaches to<BR>Juneau, Alaska, USA<BR>38<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>-1000<BR>-800<BR>-600<BR>-400<BR>-200<BR>0<BR>200<BR>400<BR>600<BR>800<BR>1000<BR>0 100 200 300 400 500 600 700 800 900 1000<BR>Difference (feet)<BR>Number of Approaches<BR>HAT ft)<BR>---GAME HAT (no Missed Approach) – Actual ILS HAT<BR>---GAME HAT (with Missed Approach) – Actual ILS HAT<BR>Effect of the Missed Approach<BR>GAME Validation<BR>39<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GLS/LPV Missed Approach Splay<BR>FAA Order 8260.50<BR>40<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>GLS/LPV Missed Approach Splay<BR>FAA Order 8260.44A<BR>41<BR>April 2004<BR>© 2004 The MITRE Corporation. All Rights Reserved.<BR>RNP Missed Approach Splay<BR>FAA Order 8260.51
页:
[1]