Air Traffic Management
**** Hidden Message ***** Air Traffic Management<BR>Amedeo R. Odoni<BR>September 17, 2002<BR>Air Traffic<BR>Management<BR> Objective: To review briefly some<BR>developments regarding ATC/ATM,<BR>primarily as they apply to airports<BR> Topics:<BR>QGeneral Comments<BR>QTraffic Flow Management<BR>QIncreasing Airport Capacity<BR>QAdvanced ATM Systems<BR>QDifferences between US and Europe<BR>ATM: Six fundamental components<BR>1. Procedures and regulations; organization<BR>of airspace<BR>2. Human air traffic controllers<BR>3. Automation systems (computers, displays,<BR>decision support systems)<BR>4. Communication systems (air, ground)<BR>5. Surveillance systems (e.g., radar)<BR>6. Navigation systems (e.g., VOR/DME, ILS,<BR>GPS)<BR>Complex Requirements for ATM<BR> Exceptional levels of safety<BR> Accommodate growing numbers of diverse<BR>users in efficient traffic flows<BR> Mesh seamlessly humans and machines,<BR>including increasingly sophisticated<BR>automation aids<BR> Take advantage of new technology<BR> Evolve gradually without “discontinuities”<BR> Operate at reasonable cost to service providers<BR>and users<BR>Generations of ATM Systems<BR> First: no (or little) radar coverage; ATC<BR>via communications only<BR> Second: analog radar coverage<BR> Third: digital (secondary) radar; upgraded<BR>ground-based CNS; automation of many<BR>data processing tasks<BR> Fourth: advanced automation aids; digital<BR>data links; satellite-based CNS<BR>Status of Air Traffic Management<BR> Dramatic Differences Among Nations<BR>and Regions<BR> (Many) Developing Countries:<BR>• “first” generation ATC systems with limited<BR>(or no) radar coverage and few (often poorly<BR>maintained) navaids<BR> Advanced Industrial Countries:<BR>• mostly “third” generation systems with<BR>digital radar and significant automation<BR>• beginning to make transition to highly<BR>automated fourth generation systems<BR>Schematic Representation of ATM<BR>System<BR>Type of Facility Terminal Area Facilities En Route Facilities<BR>Type of Control<BR>Controlling<BR>Facility<BR>Airport Traffic<BR>Control Towers<BR>ApproachControl<BR>Facilities<BR>Air Route TrafficControl Centers<BR>(ARTCCs)<BR>Ground Traffic Control<BR>Takeoff and Landing<BR>Control<BR>Approach and<BR>Departure Control ATC During Transition and Cruise<BR>En Route Airspace<BR>Airspace<BR>Airport Traffic Area ApproachControl<BR>(Tracon Area)<BR>Typically 5 nmi<BR>And 3,000 ft AGL<BR>Typically extending up<BR>to 40 nmi + 10,000 ft<BR>from the Airport<BR>Transitional Phase<BR>Typically 50-150 nmi<BR>From Airport<BR>Cruise Phase<BR>Up to 60,000 ft<BR>Typical Flight Time Typical Ground Time<BR>5 - 10 min<BR>Typical Flight Time<BR>10 - 20 min<BR>Typical Flight Time<BR>10 - 20 min<BR>Typical Flight Time<BR>20 min to several hrs<BR>Flight Profile Runway<BR>Runway<BR>Cost to Users of ATM<BR>Constraints & Inefficiencies<BR> Generators of Costs:<BR>Delays Missed Connections<BR>Cancellations Indirect Routing<BR>Diversions Sub-optimal Flight Paths<BR> Uncertainty as to True User Costs<BR> Reasonable Guess:<BR>Cost to Airlines and Passengers ~ $4-6 billion/year,<BR>in Europe alone and in United States alone<BR>“Major Problem” Airports (2010)<BR>Alternatives for Addressing Airport and<BR>Terminal Airspace Capacity Problem<BR>1. Increased airport capacity<BR>– second, third, … airports<BR>– new, larger airports to replace older ones<BR>– more runways, etc. at existing ones<BR>– improved ATM<BR>2. Demand management<BR>– total operations<BR>– by time-of-day<BR>3. Flow management; reduce cost and impacts of<BR>unavoidable delays<BR>4. Other modes of transportation; substitutes for<BR>transportation (communications)<BR>Definition and Fundamentals of<BR>ATFM<BR> ATFM: Strategic planning and implementation of<BR>regional and national flows to best “match” demand with<BR>available capacity and minimize impact of congestion on<BR>users and operators of ATM system<BR> Now vital element of both European and US ATM systems<BR> Basic steps:<BR>(1) Prediction of potential overloads<BR>(2) Development of strategies<BR>(3) Implementation of strategies<BR> The tools for accomplishing (2) and (3):<BR>• Ground-holding (more “strategic”)<BR>• Re-routing, metering, speed control, sequencing<BR>Time horizon ranges from months to ~30 minutes<BR>Strategic and Tactical ATFM<BR>Actions<BR>Reduced Capacity at SFO Typically<BR>Leading to Initiation of a GDP<BR>The Ground Delay Problem<BR> Motivation: If long delays must be suffered, they<BR>would be better taken on the ground, prior to<BR>take-off<BR>• Safety, workload, fuel<BR> Must be solved in the presence of uncertainty<BR>regarding airport capacity<BR>Q “Type 1 Error”<BR>– Demand higher (or capacity lower) than expected,<BR>leading to long airborne delays<BR>Q “Type 2 Error”<BR>– Demand lower (or cap. higher) than expected, leading<BR>to unnecessary delays on the ground<BR> Highly dynamic environment<BR>GDP Until 1998<BR> Prediction of Overload<BR>Q Compare Airport Acceptance Rate (AAR) for<BR>Arrivals to Scheduled Demand<BR> Development of Strategy<BR>Q Calculate delay required of each flight, First-<BR>Scheduled, First-Served (FSFS), to meet AAR<BR> Implementation of Strategy<BR>Q Issue Expected Departure Clearance Times<BR>(EDCT’s) to aircraft<BR> Could we improve on this?<BR>Concerns About “Old” GDPs:<BR>Motivation for CDM<BR> Did not consider airline preferences regarding<BR>flight priorities, crew connections, “banks”/<BR>“waves”, etc.<BR> Was too conservative<BR> Did not deal well with uncertainty<BR> A “system-wide” viewpoint (instead of an<BR>individual user’s): the ATFM system’s operator<BR>(the FAA) effectively decided what is best for<BR>everyone (“global” objective function)<BR>Collaborative Decision-Making<BR>(CDM) in U.S.<BR> New approach to traffic flow management<BR> Airline Operations Centers (AOCs) and<BR>FAA share information on capacities,<BR>delays, cancellations, preferences, etc.<BR> First experiments with GDPs at SFO and<BR>EWR (1/98); adopted for all airports (9/98)<BR> Has already saved many $$ in delay costs<BR> Opportunity to work and make decisions<BR>in real time with a common data base<BR> Greatly expanded scope and objectives at<BR>this time<BR>CDM Infrastructure<BR>ATCSCC<BR>FSS TRACON Tower<BR>AOC<BR>AOC<BR>AOC<BR>AOC<BR>CDMNET<BR>Old Tech Communications<BR>Dynamic Slot Assignment System<BR>under CDM<BR>1. FAA estimates airport acceptance rate (AAR) at<BR>arrival airport<BR>2. FAA assigns slots to airlines according to AAR on<BR>first-scheduled, first-served basis (“ration by<BR>schedule”)<BR>3. Each airline tells FAA how its own slots will be used<BR>(substitutions and cancellations)<BR>4. After cancellations become known, “compression”<BR>is performed to take advantage of empty slots<BR>5. FAA assigns controlled time of arrival (CTA) to each<BR>flight and an associated controlled time of departure<BR>(CTD)<BR>6. (Future?) No CTDs: airline determines take-off time<BR>for each flight to meet that flight’s CTA.<BR>Airline Flight ETA CTA Delay<BR>A 1 0700 0700 0<BR>A 2 0700 0710 10<BR>B 3 0705 0720 15<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 6 0710 0750 40<BR>A 7 0720 0800 40<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 70<BR>Total B 160<BR>Total C 100<BR>Total D 330<BR>Example: Original Schedule and<BR>Initial GDP Schedule<BR>Example continued: A GDP<BR>Scenario<BR> Flight A1 is cancelled<BR> Airline B ranks flights B3-B6 in the<BR>order {B6, B4, B5, B3} in terms of<BR>priority<BR>Note: Under CDM rules airlines may<BR>freely substitute within their own flight<BR>schedule and can move any flight to a<BR>slot which is not earlier than that<BR>flight’s ETA<BR>Modified GDP: Cancellation of A1<BR>and Swapping of B3 and B6 Slots<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>Void Void -- 0710 --<BR>B 6 0710 0720 10<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>A 7 0720 0800 40<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 60<BR>Total B 160<BR>Total C 100<BR>Total D 320<BR>Potential GDP if A Discloses<BR>Cancellation of A1 to FAA<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>B 4 0705 0720 15<BR>B 5 0710 0730 20<BR>B 3 0705 0740 35<BR>A 7 0720 0750 30<BR>C 8 0720 0800 40<BR>B 9 0740 0810 30<BR>C 10 0740 0820 40<BR>A 11 0820 0830 10<BR>B 12 0840 0840 0<BR>Total A 40<BR>Total B 100<BR>Total C 80<BR>Total D 220<BR>Potential GDP if A Does Not<BR>Disclose Cancellation of A1<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>Void Void -- 0710 --<BR>B 6 0710 0720 10<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>A 7 0720 0800 40<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 60<BR>Total B 160<BR>Total C 100<BR>Total D 320<BR>CDM Rules for Cancelled Flights<BR> CDM recognizes need to provide<BR>incentives to airlines to share information<BR>regarding flight cancellations and other<BR>changes in plans<BR> CDM Rule: An airline that cancels a flight<BR>has the right to advance later flights to the<BR>first feasible slot which becomes available<BR>as a result of the cancellation.<BR>Substitutions under CDM Give Priority<BR>to Airline Which Cancelled Flight<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>Void Void -- 0720 --<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>A 7 0720 0800 40<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 60<BR>Total B 150<BR>Total C 100<BR>Total D 310<BR>After Moving A7 Up….<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>A 7 0720 0720 0<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>Void -- -- 0800 --<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 20<BR>Total B 140<BR>Total C 100<BR>Total D 260<BR>Compression of Schedule<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>A 7 0720 0720 0<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>C 8 0720 0800 40<BR>B 9 0740 0810 30<BR>Void -- -- 0820 --<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 20<BR>Total B 130<BR>Total C 90<BR>Total D 240<BR>Final GDP under CDM after<BR>Substitutions and Compression<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>A 7 0720 0720 0<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 3 0705 0750 45<BR>C 8 0720 0800 40<BR>B 9 0740 0810 30<BR>A 11 0820 0820 0<BR>C 10 0740 0830 50<BR>B 12 0840 0840 0<BR>Total A 0<BR>Total B 130<BR>Total C 90<BR>Total D 220<BR>Potential GDP if A Discloses<BR>Cancellation of A1 to FAA<BR>Airline Flight ETA CTA Delay<BR>A 2 0700 0700 0<BR>B 6 0710 0710 0<BR>B 4 0705 0720 15<BR>B 5 0710 0730 20<BR>B 3 0705 0740 35<BR>A 7 0720 0750 30<BR>C 8 0720 0800 40<BR>B 9 0740 0810 30<BR>C 10 0740 0820 40<BR>A 11 0820 0830 10<BR>B 12 0840 0840 0<BR>Total A 40<BR>Total B 100<BR>Total C 80<BR>Total D 220<BR>Airline Flight ETA CTA Delay<BR>A 1 0700 0700 0<BR>A 2 0700 0710 10<BR>B 3 0705 0720 15<BR>B 4 0705 0730 25<BR>B 5 0710 0740 30<BR>B 6 0710 0750 40<BR>A 7 0720 0800 40<BR>C 8 0720 0810 50<BR>B 9 0740 0820 40<BR>C 10 0740 0830 50<BR>A 11 0820 0840 20<BR>B 12 0840 0850 10<BR>Total A 70<BR>Total B 160<BR>Total C 100<BR>Total D 330<BR>Original Schedule and Initial GDP<BR>Schedule<BR>Some “Open” Problems in CDM<BR> Accurate forecasting of demand, capacity,<BR>delays<BR> Improvements to FSM software<BR> Airlines: how many and what flights to<BR>cancel during GDPs?<BR> Setting the “airport acceptance rate” (AAR)<BR> Considering trade-offs between allocating<BR>capacity to arrivals and departures<BR> GDP control strategies<BR> A real-time “slot exchange”?<BR> Collaborative routing<BR>SFO Demand and Weather<BR>Implications of CDM<BR> CDM represents a major change in ATM<BR>environment<BR> Opportunity to work and make decisions<BR>in real time with a common database<BR> Step toward decentralization and Free<BR>Flight<BR> Immediate impacts on GDPs and routing<BR> Longer-term impacts on entire spectrum<BR>of ATM operations<BR> Possibly unexpected developments<BR>Examples of approaches to increasing<BR>airside capacity and/or improving efficiency<BR>Terminal area ATC automation aids<BR>QTools for arrival scheduling, sequencing and spacing<BR>QConvergent Runway Display Aid (CRDA)<BR>QSurface traffic automation (TARMAC, SMA, A-SMCGS)<BR>QDeparture planning tools (EDP)<BR> Wake-vortex separations<BR> Integrated terminal weather systems<BR> Precision runway monitor for closely-spaced parallel<BR>approaches<BR> Split approaches to close parallels; multiple runway IFR<BR>approaches<BR> ADS-B supported separations<BR> GPS-based precision approaches<BR>Advanced Terminal Area<BR>Automation Aids<BR>Decision support for arrival processing:<BR> CTAS (Center TRACON Automation System, U.S.)<BR> COMPAS (Frankfurt)<BR> MAESTRO (Paris)<BR>Terminal area transitioning, scheduling,<BR>sequencing and spacing of airport arrivals: last<BR>~40 minutes of flight<BR>Several ongoing efforts to develop integrated<BR>arrival/departure/surface decision support<BR>systems<BR>Impact of CTAS (p-FAST) on DFW<BR>Arrival Rates<BR>0<BR>20<BR>40<BR>60<BR>80<BR>100<BR>120<BR>140<BR>160<BR>IFR, 2<BR>Runways<BR>IFR, 3<BR>Runways<BR>VFR, 3<BR>Runways<BR>Arrival Rate (aircraft/hour)<BR>Baseline<BR>FAST<BR>Mid-morning rush data (source: Mr. T. Davis, NASA Ames)<BR>Separation Assurance<BR>Considerations<BR>PROCEDURAL<BR>SAFETY<BR>BUFFER<BR>PERSONAL<BR>SAFETY BUFFER<BR>MINIMUM<BR>SEPARATION<BR>STANDARD<BR>HAZARD<BR>ZONE<BR>SURVEILLANCE<BR>UNCERTAINTY<BR>Surveillance & Procedural Safety<BR>Buffer Components<BR>Procedural safety buffer<BR>now implicitly contains:<BR>Q Controller<BR>• Detection<BR>• Comprehension<BR>• Resolution<BR>Q Communication<BR>Q Pilot<BR>• Detection<BR>• Comprehension<BR>• Action<BR>Q Other ?<BR>Surveillance uncertainty<BR>contains:<BR>Q Position uncertainty<BR>Q Update rate<BR>Q Velocity &<BR>acceleration<BR>uncertainty<BR> Initial standards based primarily on surveillance uncertainty<BR> Hazard recovery now implicitly contained within standard?<BR>Improved Surveillance Has Not Led To<BR>Significantly Reduced Separations<BR>WHEN STANDARDS<BR>WERE DEVELOPED<BR>(e.g. 1950s for en route radar)<BR>IMPROVED SURVEILLANCE<BR>ENVIRONMENT<BR>(e.g. today for en route radar)<BR> Surveillance has improved, but separation minima<BR>have not changed: procedural safety buffer has<BR>implicitly increased<BR>Minimum<BR>Separation<BR>Standard<BR>Trend to Less Centralized<BR>ATM<BR> New technologies and user concerns<BR>exert strong pressure toward some<BR>decentralization of ATM systems<BR> “Free Flight” concept is an example<BR> May mean significant departure from<BR>current approaches to ATM<BR> Fundamental issues need to be<BR>investigated<BR>Free Flight<BR> “A safe and efficient flight operating capability<BR>under IFR in which the operators have the<BR>freedom to select their path and speed in real<BR>time. Air traffic restrictions are only imposed to<BR>ensure separation, to preclude exceeding airport<BR>capacity, to prevent unauthorized flight through<BR>special use airspace and to ensure safety of<BR>flight. Restrictions are limited in extent and<BR>duration to correct the identified problem. Any<BR>activity which removes restrictions represents a<BR>move toward “free flight.”<BR>Report of RTCA Board of Directors Select Committee on<BR>Free Flight (1/95)<BR>Future of ATM Globally<BR> Essential components<BR>• Satellite-based communications, navigation, and<BR>surveillance (CNS)<BR>• Use of Global Navigation Satellite Systems such as<BR>GPS and GLONASS<BR>• Digital data links<BR>• Flight Management Systems<BR>• Conflict probes, collision avoidance systems<BR> Opportunity for countries with less<BR>developed ATM systems to “leapfrog”<BR> ATM in oceanic and remote areas will be<BR>first to benefit in important ways dddddddddddddddddddddddd 非常需要,谢谢楼主!还在实习啊
Air Traffic Management
看上去费劲 what is this? PPT? 谢谢楼主,学习学习
页:
[1]