- 注册时间
- 2008-9-13
- 最后登录
- 1970-1-1
- 在线时间
- 0 小时
- 阅读权限
- 200
- 积分
- 0
- 帖子
- 24482
- 精华
- 4
- UID
- 9
|
除非CMM中有特殊的要求,衬套不得在原位大修。必须拆下衬套,对本体金属进行彻底的检查,防止在烘焙过程中衬套与孔之间的表面失效。如果大修过程中衬套磨损极限不复合要求,应将衬套恢复到设计涂层要求和的尺寸配合要求后进行安装。
Wheel bearing fractures or high-energy refused takeoffs often result in high local heat on an axle. Discoloration of the enamel, primer, or chrome or evidence of cadmium damage on the inner diameter of the axle may require the heat-damaged component be removed from service.
机轮轴承的断裂和高能中断起飞通常都是由于轴上产生了局部的高热量。如果轴的内径上的珐琅、底漆、镀铬层退色或镀镉层损伤,应当在部件投入使用之前拆下热损部件。
Overheating affects components to various degrees; in some instances, only finish durability is degraded. This may result in a shorter than planned time between component overhauls.
过热对部件的影响花样繁多,有时,仅仅是降低涂层的耐久性,这会导致部件大修间隔时间缩短。
HYDROGEN EMBRITTLEMENT氢脆化
Hydrogen embrittlement occurs when a high-strength alloy steel component absorbs hydrogen, which is not removed in a timely manner in accordance with the SOPM (e.g., embrittlement relief baking).
如果高强度合金钢在时效过程中没有遵循SOPM(排氢烘焙)的要求而吸收了氢元素就会发生氢脆。
When hydrogen remains in a component for an extended time, the microstructural damage that develops significantly degrades the mechanical properties of the steel. The infused hydrogen migrates to areas of high stress (e.g., material internal stresses) and creates local microstructural damage. When the component is installed on an airplane, this internal damage can lead to crack initiation and propagation, resulting in component fracture.
如果氢元素残留在部件中达到一定的时间,微结构损伤就会使钢材的机械性能严重衰减。如果氢元素转移到高应力区域(材料的内部应力)就会导致微结构损伤。如果把这样的部件安装在飞机上,其内部损伤会导致裂纹并扩展,最终造成部件断裂。
The elevated temperatures reached during hydrogen embrittlement relief baking, which is performed directly after stripping or plating operations during overhaul, effectively remove hydrogen generated during these operations. Processes that must be followed with relief baking include chrome, sulfamate-nickel, and LHE cadmium plating; stripping operations; and many nital etch inspections. After hydrogen-generating operations, relief bake delay time limits must be observed to ensure complete hydrogen removal. In general, the best practice is to initiate baking as soon as possible following a plating operation.
大修时,在剥离或电镀后进行的排氢烘焙的时间长度要严格控制,就能有效排出氢元素。必须严格遵循排氢程序包括镀铬、磺胺基镍镀层和LHE镀镉检查、剥离和各阶段的回火刻蚀检查程序。在产生氢元素的步骤结束后,必须遵守排氢烘焙的时间限制,确保氢元素完全排放掉。总而言之,最佳的选择就是在电镀后尽快进行烘焙。
The delay time between plating completion and baking start typically is observed. However, when thick plating deposits or multiple plating operations are performed on a single component, the total time between initial plating start and baking start is a key factor when determining the maximum delay time allowed. For example, embrittlement relief baking must begin 10 hr after sulfamate-nickel plating is completed or within 24 hr after plating begins, whichever results in the shortest overall bake delay.
电镀后和烘焙开始之间的间隔时间一定要严格控制。然而,有时一个部件上会有很厚镀层和多重电镀,那么确定允许的最大间隔时,电镀开始的时间和烘焙开始的时间的间隔是关键因素。例如,氢脆排放烘焙必须在磺胺基镍电镀完成之后10小时内和电镀开始后24小时内进行,就会使烘焙时间间隔最短。
Figure 16 shows a flap track that cracked because of hydrogen embrittlement 149 flight cycles after overhaul. Figure 17 is a scanning electron microscope view of a typical hydrogen embrittlement crack where separation occurs along grain boundaries. Typically, hydrogen embrittlement cracks propagate rapidly once loads are applied to the part. In some cases, internal residual stresses are sufficiently high to cause cracking even before the part is installed.
图16示意了襟翼滑轨大修后149个飞行循环内由于氢脆造成裂纹的实例。图17示意了用电子显微镜扫描出的沿晶粒边界产生的氢脆裂纹。通常,部件承载后,氢脆裂纹扩展迅速。有时,内部剩余应力如果足够大,在部件装机之前就会产生裂纹。
CADMIUM EMBRITTLEMENT隔脆化
Overheating LHE cadmium or cadmium-titanium plated components causes embrittlement of high-strength alloy steel by cadmium, resulting in cadmium diffusion into the steel grain boundaries. Solid-metal embrittlement by cadmium can occur at temperatures below the cadmium melting point. These effects on the base metal can begin to occur at 450°F, whereas the cadmium melting point is generally 610°F. The microstructural anomalies resulting from cadmium embrittlement can lead to component fractures in service.
过热LHE镀镉和镀镉钛会造成高强度合金钢部件的镉脆化,导致镉元素转移到钢材料晶粒的边界。低于镉的融解点温度时会出现故态金属的镉脆化。450°F开始对本体金属有影响,而镉的融解点一般在610°F。隔脆化造成的微结构异常会导致部件在使用中断裂。
Determining whether cadmium has migrated into the grain boundaries of cadmium-plated, high-strength alloy steel components requires destructive testing of the components. If these components have been overheated, salvage may not be possible. However, if high-temperature exposure was short and discoloration of the enamel or primer was minimal, the component may be a candidate for salvage. Slight or no discoloration of the enamel or primer may indicate the cadmium plating was not heated to the extent that cadmium embrittlement would be suspected.
确定镉元素是否转移到晶粒边界的方法就是对高强度合金钢部件进行无损探伤。如果部件过热,就无法弥补。然而,如果高温时间不是很长而且珐琅或底漆的退色情况不严重,部件还是有望弥补的。珐琅或底漆轻微退色或没发生退色,表示镀镉层没有受热,可能没有出现镉脆情况。
IMPROPER FINISHING涂层不当
Improper application of protective finishes during manufacture or overhaul can lead to finish degradation, corrosion, and corrosion pitting, which can result in component fracture while in service (figs. 2 and 3.) Some cleaners and chemicals may accelerate finish degradation and lead to corrosion. Operators should ensure that cleaners and chemicals are tested before use in accordance with Boeing document D6 17487, Evaluation of Airplane Maintenance Materials. Testing to these requirements will determine whether a cleaner or chemical is detrimental to protective finishes or base metal. However, long-term exposure to the solution or material still may adversely affect finishes.
制造和大修过程中如果保护涂层的施用不当会导致涂层失效、腐蚀和腐蚀斑点,而造成部件在使用中断裂(图2和3)。一些清洁剂和化学剂也可能加速涂层的失效并导致腐蚀。工作者应确保在使用之前按照波音手册D6 17487 — 飞机维护材料的分析,对清洁剂和化学剂它们进行测试。用测试的结果来确定所使用的清洁剂或化学剂是否对保护涂层或本体金属有害。然而,涂层长期与溶剂或化学剂接触始终是有负面影响的。
Personnel must ensure that materials used for activities such as cleaning and deicing conform to Boeing document D6-17487 requirements and will accomplish the intended task (verified by the material provider or operator). Refer to the Aircraft Maintenance Manual for materials specified for aircraft cleaning and deicing. The CMM specifies the materials for use in repair.
工作者必须确保活跃性的材料诸如清洁剂和除冰剂满足波音手册D6-17487的要求并完成适当的工作(由材料供应商或航空公司提供证明)。参考飞机维护手册中对飞机清洁剂和除冰剂材料的规定,CMM规定了维修中所使用的材料。
High-strength alloy steel components should be stripped completely during overhaul (including removal of bushings and bearings in all structural components). This allows a thorough inspection of the base metal (a primary component overhaul requirement) and ensures that all finishes, including the LHE cadmium plating and conversion coating, are restored to the original design requirements. This is addressed in an all-model Boeing service letter dated April 23, 2002, Overhaul of High Strength Steel Components–Cadmium Strip Required (e.g., 757-SL-20-036-A, 767-SL-20-038-A, 747-SL-20-062-A).
高强度合金钢部件应当在大修中完全剥离(包括所有结构部件的轴承和衬套),以便对本体金属进行全面的检查(最基本的部件大修要求)并确保所有的涂层包括LHE镀镉层和转换涂层恢复到了初始设计的要求。在波音2002年4月23日颁发的针对所有机型的服务信函 -高强度合金钢部件 -镀镉层剥离要求(757-SL-20-036-A、767-SL-20-038-A、和747-SL-20-062-A)中强调了这一点。
Restoration of the shot-peened layer during overhaul is important to ensure that the shot-peen compressive residual stresses are maintained or restored. Removing or damaging the shot-peened layer can reduce the protection that this compressive layer provides against fatigue and stress corrosion crack initiation. Discontinuous shot-peening can lead to crack initiation at the tensile surface stresses adjacent to edges of abrupt compressive layer runouts (no fadeout). All reworked surfaces must be shot-peened after removing material damaged by corrosion, heat, and deformation.
大修中喷丸层的恢复相当重要,确保喷丸压缩层的剩余应力大修或应力恢复。喷丸压缩层的改变或损坏会降低压缩层抵抗疲劳和应力腐蚀裂纹的保护性。受表面张力作用,不连续喷丸会导致在压缩层过渡段突变的边沿出现裂纹。所有的翻修表面在去除腐蚀、受热和变形材料后必须进行喷丸。
As a rule, if material removal exceeds 0.0015 in (or 10 percent of the Almen strip intensity), the surface should then be shot-peened to CMM requirements. Exceeding shot-peen requirements is better than leaving areas without shotpeening. All portions of a component that are to be shot-peened should first be completely stripped; no cadmium residue should remain on the surface.
如果材料的去除量超过0.0015 in(或Almen剥离密度的十分之一),应当按照CMM的要求对表面进行喷丸。过度喷丸要求要比不喷丸好一些。部件的所有喷丸部分应当首先完全剥离,表面不得残留镉。(拉尔夫·盖博 著/ 汕航岳瑞军 蒋维良 译 |
|