+ q& H- N: T6 s
第19章 旋翼机飞行手册 3 A7 v5 r$ j- X+ S* P7 v+ g
As with most certificated aircraft manufactured after March 1979, FAA-certificated gyroplanes are required to have an approved flight manual. The flight manual describes procedures and limitations that must be adhered to when operating the aircraft. Specification for Pilot’s Operating Handbook, published by the General Aviation Manufacturers Association (GAMA), provides a recommended format that more recent gyroplane flight manuals follow. [Figure 19-1] $ o0 i6 v3 |4 H1 a2 F {
1979年3月,同大多数具有人为证明文件的飞行器一样,联邦航空局出台了经核准的旋翼机飞行手册。该手册主要包括旋翼机操作必须的程序和注意事项。由GAMA(飞行制造业协会)出版的飞行员操作规范手册,提供了值得参考的旋翼机飞行手册格式,其格式如下:[图 19-1] ) T7 P9 t/ r1 O1 w7 V: A% u' o; U
' s+ F" b7 @2 ?& K- h- A
& r q x% T; F
4 N( R* p6 A( X1 o2 ?: J& M
0 E9 _3 @1 o4 [2 n; z $ l0 q O5 h m8 x9 t
; r+ j1 b- d( r5 g
6 S" S! [: o( a- m 4 ?: s! a1 i0 G" v2 d
7 z8 ^6 e) c ]/ B! i & m, {* x* L u: M* I7 N1 G
8 \% D Y1 Z X- ^9 P5 d
: V( V7 \; `# O g" w7 e' _, @! h8 v# e. J 6 |: K* \* ?- O) Z: M
3 T8 J3 b1 | \' e" m
- Z/ n# {3 ~& P6 P; j( i+ T( L% `) H , W% D7 N4 t9 p3 k' V: U3 t' L
4 t2 {2 x* p! Z/ ]
; W$ g; r& b# s& H, ` C2 {
8 @4 @; P" L- I7 T% x' G
$ C7 W% L% _& M
% ]9 i0 @, x; } $ [! p) @1 o! o o. [
- ]( b+ C6 x# P8 O
; ]0 g7 R1 i: w2 f7 w + b; M4 j' \0 R* Z. C
6 |( E( G8 e6 x7 D6 k- k+ V. K- i: T' F+ i
" U& V1 U! y) D* a9 k: b
; R, G' Z% X8 u5 s
+ l# B6 O6 }6 @8 d/ L7 y ! M: j# A. k# F' k* `
Figure 19-1. The FAA-approved flight manual may contain as many as ten sections, as well as an optional alphabetical index. 0 M" E4 R1 s5 W7 [0 F
图19-1. 联邦航空局核准的飞行手册主要包括10个部分,同时具有可选择的数字索引。
' C: ^! k% `, d7 e( FThis format is the same as that used by helicopters, which is explained in depth in Chapter 6—Rotorcraft & t( F6 w& d7 k3 m d
Flight Manual (Helicopter). , J) X- [" Z0 u! Z' _! P
这个格式同第六章直升机飞行手册的格式是一样的。
* y& Z$ c! z- A) p" V" p# V, xAmateur-built gyroplanes may have operating limitations but are not normally required to have an approved flight manual. One exception is an exemption granted by the FAA that allows the commercial use of & }: q: j" k9 u! V3 T2 K
two-place, amateur-built gyroplanes for instructional purposes. One of the conditions of this exemption is to
1 {3 _/ e# L n8 Thave an approved flight manual for the aircraft. This manual is to be used for training purposes, and must be 3 e/ d S! U, l7 h2 O
carried in the gyroplane at all times.
$ s* n: _4 O* Z+ a+ f* }非专业旋翼机必须有操作规范但并不一定要有经核准的飞行手册。用于两地商业贸易和训练用途的非专业旋翼机是可以免除经联邦航空局核准的程序。其中一种情况是拥有经核准的飞行器飞行手册,该手册是用于训练目的,并且一直应用在旋翼机上。
, `* B7 t0 j1 _' N) D7 k) mUSING THE FLIGHT MANUAL
, l+ B! P. ~5 r4 k- _飞行手册应用
: V& D% O! i' F0 ~. v( }1 l6 iThe flight manual is required to be on board the aircraft to guarantee that the information contained therein is readily available. For the information to be of value, you must be thoroughly familiar with the manual and be able to read and properly interpret the various charts and tables. ( `2 O4 B9 P$ `# `) A2 v
飞行手册必须在航行器上并且保证飞行手册的信息是易懂有效的。为了使信息确实有效,飞行员应对飞行手册内容非常熟练并能恰当的解释各种图表及表格的含义。
# y' l; l* \9 l# M3 q/ ZWEIGHT AND BALANCE SECTION
' r5 A! }7 A# X载重和平衡部分
5 H% p: s- V9 {: _The weight and balance section of the flight manual contains information essential to the safe operation of
! N8 t; ]) e3 h2 a. _. h. @the gyroplane. Careful consideration must be given to the weight of the passengers, baggage, and fuel prior to
) z: ~, ]/ T! g% Q; U" Z/ Xeach flight. In conducting weight and balance computations, many of the terms and procedures are similar to : M' N. z) C/ S- ^
those used in helicopters. These are further explained in Chapter 7—Weight and Balance. In any aircraft, failure to adhere to the weight and balance limitations prescribed by the manufacturer can be extremely hazardous. , R9 ^% x" T3 C/ r3 z5 {
飞行手册载重平衡部分是旋翼机安全工作的要点。每次飞行前的载油量、乘客重量、行李重量都必须经过认真考虑。在载重及平衡的计算上,很多计算条件和计算程序都与直升机载重和平衡计算相似。这些在第7章载重及平衡部分有详细解释。对于任何飞行器,载重和平衡超过了厂商说明都是非常危险的。
6 s$ C! y- |& h* hSAMPLE PROBLEM
: q/ Q% o5 n, s+ p' R0 S$ c例子
; V- v, j, ]+ S# ~As an example of a weight and balance computation, assume a sightseeing flight in a two-seat, tandem-configured gyroplane with two people aboard. The pilot, seated in the front, weighs 175 pounds while the rear seat passenger weighs 160 pounds. For the purposes of this example, there will be no baggage carried. The basic empty weight of the aircraft is 1,315 pounds with a moment, divided by 1,000, of 153.9 pound-inches.
- V$ C# G$ A0 R% a' |( s9 b下面是一个载重及平衡的计算例子,假设有一个双座的,座位一前一后布置得双人观光旋翼机,飞行员重175磅,背后的乘客重160磅。在这个例子中,假设所有人都没有携带行李。旋翼机的最大空载是1315磅产生的力矩,除以1000,是153.9磅/英寸。
+ u- w6 n* G+ G* }% m, `' Y& `8 i9 `Using the loading graph [Figure 19-2], the moment/1000 of the pilot is found to be 9.1 poundinches, and the passenger has a moment/1000 of 13.4 pound-inches. 6 p. a3 J; w: @
根据载重分配图[图19-2],飞行员重量产生的力矩/1000是9.1磅/英寸,乘客重量产生的力矩/1000是13.4磅/英寸。 / Z$ M. P( a5 c% L5 @
Adding these figures, the total weight of the aircraft for this flight (without fuel) is determined to be 1,650 4 M% I; ^0 t2 I
pounds with a moment/1000 of 176.4 pound-inches.[Figure 19-3]
1 y z; l. i& @4 g5 {( }! F% [根据以上数据,这次飞行器总重量(燃油重量除外)是1650磅,产生的力矩/1000是176.4磅/英寸 Z& M$ H) }; u6 G! O
[图19-3]。 9 w: h+ F: d; {3 t3 X& P
重量(单位:磅) 力矩(单位:磅/英寸) 6 a3 y8 c# E. O
飞行器重量 1315 153.9
. ?% B* S& k. p飞行员 175 9.1
7 S& O3 n# F4 o1 Y) L# o乘客 160 13.4 8 a* s2 v2 |3 J* C" m
行李 0 0
5 |; c% k( r) j. I% V总计 1650 176.4 $ ^2 g9 c, o9 b( ?
飞行器最大承载重量=1800磅
' u& _8 ~- n, I( j) X1 xFigure 19-3. Loading of the sample aircraft, less fuel.
q+ K% O3 m: v9 i# m1 T图19-3 无油状态下飞行器承载计算 8 z2 C M6 N B1 F8 r
The maximum gross weight for the sample aircraft is 1,800 pounds, which allows up to 150 pounds to be carried in fuel. For this flight, 18 gallons of fuel is deemed sufficient. Allowing six pounds per gallon of fuel, the fuel weight on the aircraft totals 108 pounds. Referring again to the loading graph [Figure 19-2], 108 pounds of fuel would have a moment/1000 of 11.9 pound-inches. This is added to the previous totals to obtain the total aircraft weight of 1,758 pounds and a moment/1000 of 188.3. Locating this point on the center of gravity envelope chart [Figure 19-4], shows that the loading is within the prescribed weight and balance limits. 7 M, w7 k! k; j& U* t9 Z
该例中飞行器最大承载重量1800磅,最大允许载油量150磅。这次飞行,18加仑燃油已经足够。每加仑燃油重6磅,则燃油总重108磅。对照图19-2,108磅燃料产生的力矩/1000是11.9磅/英寸。与图19-3产生的力矩/1000的总计是188.3磅/英寸。对照图19-4地心引力极限图表,可以看出此次飞行的承载处在安全线之内。
0 k0 ]9 c5 U' s6 c
: P* ]4 l4 `& P" C" q/ [8 vFigure 19-4. Center of gravity envelope chart. - t: w: v+ F; {; B
图19-4 地心引力极限图 : ~0 p) s$ f2 R0 u0 ?* }6 p
PERFORMANCE SECTION 5 z" h5 z5 W6 |
性能部分 6 n) p% K! N6 V/ l
The performance section of the flight manual contains data derived from actual flight testing of the aircraft.Because the actual performance may differ, it is prudent to maintain a margin of safety when planning 3 e& c$ w# {" @" X, w8 A
operations using this data. - S% X0 j! W; B1 t$ O0 ?
飞行手册的性能部分数据来源于飞行器实际飞行测试。由于每次飞行的性能是不同的,在编写维护及安全操作时要谨慎采用该部分数据。 ) H6 _8 M# N: n+ J; ~
SAMPLE PROBLEM
2 T, e: }1 w" C; L6 E样例 / o0 G( y% Q; J& \, @
For this example, a gyroplane at its maximum gross weight (1,800 lbs.) needs to perform a short field takeoff due to obstructions in the takeoff path. Present weather conditions are standard temperature at a pressure altitude of 2,000 feet, and the wind is calm. Referring to the appropriate performance chart 2 T; l' A1 ~- Q2 q9 G1 c
[Figure19-5], the takeoff distance to clear a 50-foot obstacle is determined by entering the chart from the left at the pressure altitude of 2,000 feet. You then proceed horizontally to the right until intersecting the appropriate ) ?7 c& s0 A4 ?5 y# O8 [
temperature reference line, which in this case is the dashed standard temperature line. From this point,descend vertically to find the total takeoff distance to clear a 50-foot obstacle. For the conditions given, this particular gyroplane would require a distance of 940 feet for ground roll and the distance needed to climb 50 feet above the surface. Notice that the data presented in this chart is predicated on certain conditions, such as a running takeoff to 30 m.p.h., a 50 m.p.h. climb speed, a rotor prerotation speed of 370 r.p.m., and no wind.Variations from these conditions alter performance,possibly to the point of jeopardizing the successful outcome of the maneuver. k+ U% f( k# B5 ^, Y4 m
在该例中,一架满载旋翼机(1800磅),需要在短道起飞以躲避跑道上的障碍物。假设在海拔2000英尺高空的温度及压力都是标准情况,无风。根据性能表[图19-5],起飞能否越过50英尺高度的障碍物决定于图表中海拔2000英尺的压力。从压力线水平的划一条与相应温度相交的参考线,这里指的是虚线(标准温度线)。从交点垂直向下就可以查到越过50英尺高的障碍物需要的起飞距离。在给定条件下,旋翼机需要离防护辊距离是940英尺,在这个距离内飞行器需要爬升到50英尺以上。这张图表中的数据是指特定情况下,比如滑跑起飞的爬升速度是30mph、50mph,旋翼的预旋速度为370rpm,无风状态。在不同的情况下飞行器性能有所改变,对其机动性等也会产生相应的影响。
! [# a; O0 _, O- w6 O
2 G* _ G) z% o0 XFigure 19-5. Takeoff performance chart. % \) c, l8 \2 e3 ?! B
图19-5 起飞性能图表
5 ?) |- @3 \, v6 g) [+ _HEIGHT/VELOCITY DIAGRAM % k A5 x3 z+ l6 d5 O
海拔/高度表 0 w$ ?- ^: a: l$ q- F
Like helicopters, gyroplanes have a height/velocity diagram that defines what speed and altitude combinations allow for a safe landing in the event of an engine failure. [Figure 19-6] During an engine-out landing, the cyclic flare is used to arrest the vertical velocity of the aircraft and most of the forward velocity. On gyroplanes with a manual collective control, increasing blade pitch just prior to touchdown can further reduce ground roll. Typically, a gyroplane has a lower rotor disc loading than a helicopter, which provides a slower rate of descent in autorotation. The power required to turn the main transmission, tail rotor transmission, and tail rotor also add to the higher descent rate of a helicopter in autorotation as compared with that of a gyroplane. . l4 l+ u. C. J; x
同直升机一样,旋翼机也有一个高度/速度表详细介绍了在发动机失效的情况下能够安全着陆的高度/速度对照[图19-6]。当发动机失效的情况下,旋转片张开来降低垂直速度和大部分前飞的速度。在旋翼机上有集成控制系统,通过增加桨矩在着陆前最大限度的减少地面滚转。相对来说,旋翼机比直升机的旋翼载荷小,自转下滑速度降低的比较慢。直升机动力系统要驱动主传动系统和尾传动系统,尾传动系统也降低了自动下滑速度。
/ a) _! T' j" g4 l+ g C/ L6 } " C9 u _( v9 I- G9 @# Y
Figure 19-6. Operations within the shaded area of a height/velocity diagram may not allow for a safe landing and are to be avoided. 3 W& g: {3 x* J# o$ K
图19-6 图中阴影区域的高度/速度无法保证安全着陆
7 B: H& P# x5 F6 J/ MEMERGENCY SECTION 7 b# b/ a4 g T- K- ? z$ g5 D1 B
紧急状况部分 : ]. y# y* |, K. H& L& O+ y
Because in-flight emergencies may not allow enough time to reference the flight manual, the emergency section should be reviewed periodically to maintain familiarity with these procedures. Many aircraft also use placards and instrument markings in the cockpit, which provide important information that may not be committed to memory.
, O, l7 C) }. ~: V在飞行中紧急状况是没有足够的时间来查阅飞行手册参考处理的,所以紧急状况部分应进行周期性复习熟悉掌握处理对策。大多数飞行器上,驾驶舱张贴布告或者仪器标识,来提供重要的、不便于记忆的紧急状况对策。
& D) y& f9 k( I6 x9 e: rHANG TEST 8 k- f9 C) z0 `! ~
悬挂试验
[7 L8 J% b9 z" S4 x- R3 S8 [9 ]5 qThe proper weight and balance of a gyroplane without a flight manual is normally determined by conducting a hang test of the aircraft. This is achieved by removing the rotor blades and suspending the aircraft by its teeter bolt, free from contact with the ground. A measurement is then taken, either at the keel or the rotor
% b1 ]* V0 |9 [! C1 omast, to determine how many degrees from level the gyroplane hangs. This number must be within the range specified by the manufacturer. For the test to reflect the true balance of the aircraft, it is important that it be conducted using the actual weight of the pilot and all gear normally carried in flight. Additionally, the measurement should be taken both with the fuel tank full and with it empty to ensure that fuel burn does not affect the loading.
( b. ?, _$ o: N旋翼机的载重及平衡标定通常是通过悬挂试验确定的。首先使飞行器旋翼和悬挂通过摇架与地面自由连接。然后在飞行器机身或者桨柱上测量,来确定旋翼机的悬挂水平。这个数据必须在厂商指定的范围内。该测试如实反映了旋翼机平衡性,可以应用在实际飞行中飞行载重及飞行调整。值得注意的是,该试验要在油箱满载及空载的情况下进行,以消除燃油对载重分布状况造成的影响。
- I: f* g, @9 a2 f U, ~! f5 P4 d0 P
) R. v( I; r. \( k3 q + _7 b+ ~: ?3 R
/ ~, V* K6 x% q4 X* ]
+ [- v+ d* r1 z& f/ N. X
$ \+ V% d; i/ J4 T- K
4 d) `+ u5 \: z2 x' R$ l
, ~- o* z, Z! N4 _( Z* O2 g% k" P I # s8 K$ t/ R0 X! H8 p
1 W. y6 c3 s$ X8 h
r# f( v; z" ?% W7 t, x$ o
" k- t# S- Q# q3 k/ U7 f 1 [0 R' I& t- I- r) k3 ` o
9 I, r J1 ?4 M6 z) d1 e
- ^6 S% }7 |- M. Y1 z% ?8 x! m. ^
# @) A/ ~9 D( G3 x " H) W& F# m( Y0 o4 M+ ]& o
" ]7 {3 w. t+ n" j0 K1 o* I
' S. ^8 Q2 ], Y2 c
- U/ L L7 K# e; d
! L& j! f3 h* j5 } + q- V! L6 T) \( t# E
! {' V9 l/ L* H
6 o9 t! ~% I) N- f$ K1 y4 r
2 L, P7 E' a) Y) o E- o+ j
# f$ g k4 M4 M+ W y
& O+ b3 E/ G( J% K1 b. X0 r/ v! Q 7 h: _. F8 Y r4 F; \8 R% v+ J0 ^
. y, `- x, I2 M) n" q$ B6 x/ qFigure 19-1. The FAA-approved flight manual may contain as many as ten sections, as well as an optional alphabetical index. * w% u3 W2 }6 T0 N2 k
图19-1. 联邦航空局核准的飞行手册主要包括10个部分,同时具有可选择的数字索引。 # `0 t2 T: e. {- f$ c# F6 u
This format is the same as that used by helicopters, which is explained in depth in Chapter 6—Rotorcraft + m8 s/ n# E9 ] Y1 w7 L$ p6 @# k0 j ^
Flight Manual (Helicopter). 8 H3 s7 ^: \8 ^$ z3 h1 S2 j
这个格式同第六章直升机飞行手册的格式是一样的。
7 d/ R9 q( I6 V- @# I$ S4 ~/ _5 v: GAmateur-built gyroplanes may have operating limitations but are not normally required to have an approved flight manual. One exception is an exemption granted by the FAA that allows the commercial use of
3 \7 j- ^! h) Q O5 C( N- |8 ktwo-place, amateur-built gyroplanes for instructional purposes. One of the conditions of this exemption is to
C' \# v( J) Bhave an approved flight manual for the aircraft. This manual is to be used for training purposes, and must be
. O8 g2 w) V {8 Jcarried in the gyroplane at all times. . _, C' ~5 p& h5 |2 c2 k$ _
非专业旋翼机必须有操作规范但并不一定要有经核准的飞行手册。用于两地商业贸易和训练用途的非专业旋翼机是可以免除经联邦航空局核准的程序。其中一种情况是拥有经核准的飞行器飞行手册,该手册是用于训练目的,并且一直应用在旋翼机上。
2 h- A+ q; ^+ \$ I2 J2 r( MUSING THE FLIGHT MANUAL " Z) B6 v# \- h+ T4 u* _
飞行手册应用 8 @4 i; p( M# C& A8 v+ ^- p
The flight manual is required to be on board the aircraft to guarantee that the information contained therein is readily available. For the information to be of value, you must be thoroughly familiar with the manual and be able to read and properly interpret the various charts and tables.
1 X4 _+ O* I" T1 c3 h; @' K( T飞行手册必须在航行器上并且保证飞行手册的信息是易懂有效的。为了使信息确实有效,飞行员应对飞行手册内容非常熟练并能恰当的解释各种图表及表格的含义。
" X) a% f4 `6 `; h1 nWEIGHT AND BALANCE SECTION ) m. r1 k, R7 q: k; l. X t. E6 g; p- m
载重和平衡部分
. X4 X( ]# L Z) p9 zThe weight and balance section of the flight manual contains information essential to the safe operation of
; o p* y. ?- Z, F7 Jthe gyroplane. Careful consideration must be given to the weight of the passengers, baggage, and fuel prior to
4 G# Y/ e% h6 q+ d4 ueach flight. In conducting weight and balance computations, many of the terms and procedures are similar to
" T" c- Z8 ?/ t2 ^: B. }those used in helicopters. These are further explained in Chapter 7—Weight and Balance. In any aircraft, failure to adhere to the weight and balance limitations prescribed by the manufacturer can be extremely hazardous.
; e$ r8 _, o9 @& n飞行手册载重平衡部分是旋翼机安全工作的要点。每次飞行前的载油量、乘客重量、行李重量都必须经过认真考虑。在载重及平衡的计算上,很多计算条件和计算程序都与直升机载重和平衡计算相似。这些在第7章载重及平衡部分有详细解释。对于任何飞行器,载重和平衡超过了厂商说明都是非常危险的。 # J$ L4 N" x( b) D! B
SAMPLE PROBLEM $ ], N: b2 C! C3 Q2 ?: ?/ n' w1 {5 `
例子
: C& K7 T) C! R, DAs an example of a weight and balance computation, assume a sightseeing flight in a two-seat, tandem-configured gyroplane with two people aboard. The pilot, seated in the front, weighs 175 pounds while the rear seat passenger weighs 160 pounds. For the purposes of this example, there will be no baggage carried. The basic empty weight of the aircraft is 1,315 pounds with a moment, divided by 1,000, of 153.9 pound-inches. " j4 ? l) E% u, K+ g
4 L7 Y5 M8 I9 T' x( m% k
% x0 L2 y; o) S5 H* R4 s$ W
. _0 L4 J6 U* |+ C5 K. \! f
& `3 a1 Y9 V; ]: h- S G4 M! m
]7 k9 f# W: U0 S; B3 I% e. m0 y$ f @8 b$ }
# E. N6 F" P, O( n6 o
Figure 19-2. A loading graph is used to determine the load moment for weights at various stations. # ?% |) _8 K0 O" L2 J- p
图19-2 确定各种重量产生的力矩承载分布图 | ffice:word" />下面是一个载重及平衡的计算例子,假设有一个双座的,座位一前一后布置得双人观光旋翼机,飞行员重ffice:smarttags" />175磅,背后的乘客重160磅。在这个例子中,假设所有人都没有携带行李。旋翼机的最大空载是1315磅产生的力矩,除以1000,是153.9磅/英寸。 , ~' y! k- I3 Y
Using the loading graph [Figure 19-2], the moment/1000 of the pilot is found to be 9.1 poundinches, and the passenger has a moment/1000 of 13.4 pound-inches. & K' @6 t* V4 |1 P6 h8 }
根据载重分配图[图19-2],飞行员重量产生的力矩/1000是9.1磅/英寸,乘客重量产生的力矩/1000是13.4磅/英寸。
3 X8 |/ k- A$ y0 ?. ^4 ~" V% AAdding these figures, the total weight of the aircraft for this flight (without fuel) is determined to be 1,650 1 E" {$ T4 a+ Z: R5 Y" b/ {
pounds with a moment/1000 of 176.4 pound-inches.[Figure 19-3] 0 X \" b& T: o& @
根据以上数据,这次飞行器总重量(燃油重量除外)是1650磅,产生的力矩/1000是176.4磅/英寸 1 a; v% U/ T1 V6 O4 T. l
[图19-3]。 3 ^0 U; u7 W3 A! M0 n* o d
6 S+ u# V& k* }6 ~2 p! {! m3 }# Q) Y' H8 k9 b. F
; S8 t' Q# X0 J3 }+ s2 M5 m
: W, N7 I. J, }* R" n
' Q! O4 J" ~% y1 ?# K
| . P3 N: l. \: a8 x+ N4 h
% V$ {; E6 b5 \ 重量(单位:磅) |
$ `% ?5 m$ F6 r; M! d0 t5 Z8 R4 O B2 Y( U" h/ \$ R
力矩(单位:磅/英寸) |
7 T# b3 b, o$ k, c( j
' r$ K. C) B# V1 t, M! W1 z" d3 R( x3 q; \5 X' z
飞行器重量 | & ]/ T z8 W6 Y) X ^! A
4 K( ?5 S9 |+ P3 r( S7 F 1315 |
( E1 _2 q U! _
9 R5 o# ?8 ~) N4 ? 153.9 | + h1 W) D/ |! l6 j
: r1 L+ F. ^ a/ l& ~3 N
* b5 u5 A. G' U0 a6 C0 { 飞行员 |
, V' M1 Y8 C6 H' ^2 `/ E/ k$ |8 q2 j7 `; l4 I* S
175 |
5 g D1 m% b- h' T: f7 V! T% u" s* h n5 U2 ~; I/ X
9.1 |
4 @+ e/ e s5 r' B- ^, M" s. r: f7 ]0 t' d9 m+ h& \
" U$ u T( m0 |- l7 F6 ` 乘客 | 8 |& g" k3 k& N V: o
9 Z l' m7 q1 | 160 | " n, ^+ p: l. x9 p1 f8 w/ g- m
) Q& n& t8 B% i" p. I 13.4 | ' r5 c3 G/ D+ t/ s1 S) [7 p
5 L% N: a, P# C) V; R1 y) \5 m/ n0 R8 F- E9 m! `- q
行李 |
# X! \: x! }0 ~2 H9 V+ z' R
* |4 u8 o" E" u0 u 0 | : e! `/ q, S: d0 B) p
9 C( ?. t/ m2 p8 M2 A' X) y 0 |
4 V0 h; Z7 `, {
6 ]% E ^/ b4 R) W% E0 e' t* @! n5 b
* E2 R3 z; x! x( [; q8 a 总计 |
: y2 A( l) C( q3 S" B% ~: B& j+ E" j1 D8 |$ x
1650 |
' @# p* |/ O; i% `% I n6 Z; Y% W, s& }' c* X" A
176.4 |
% D$ T& `7 k% O% x" A- }! ~) k+ I# t! ^ _; }, P8 z; c: @9 H& Y, w0 Z
1 `6 x6 r0 Q& e0 T1 u8 o 飞行器最大承载重量=1800磅 |
' A6 V- ^% J: e# f% t) ~Figure 19-3. Loading of the sample aircraft, less fuel.
( T* \7 T' z9 q7 J- e; _图19-3 无油状态下飞行器承载计算
; M$ ^ Z0 U4 O8 x, d* gThe maximum gross weight for the sample aircraft is 1,800 pounds, which allows up to 150 pounds to be carried in fuel. For this flight, 18 gallons of fuel is deemed sufficient. Allowing six pounds per gallon of fuel, the fuel weight on the aircraft totals 108 pounds. Referring again to the loading graph [Figure 19-2], 108 pounds of fuel would have a moment/1000 of 11.9 pound-inches. This is added to the previous totals to obtain the total aircraft weight of 1,758 pounds and a moment/1000 of 188.3. Locating this point on the center of gravity envelope chart [Figure 19-4], shows that the loading is within the prescribed weight and balance limits.
1 @, S: N- Z' |( i该例中飞行器最大承载重量1800磅,最大允许载油量150磅。这次飞行,18加仑燃油已经足够。每加仑燃油重6磅,则燃油总重108磅。对照图19-2,108磅燃料产生的力矩/1000是11.9磅/英寸。与图19-3产生的力矩/1000的总计是188.3磅/英寸。对照图19-4地心引力极限图表,可以看出此次飞行的承载处在安全线之内。
\8 w. I3 j! r6 o) ]8 z, ] / l2 j4 Q$ {& b$ }! M% B& ~& O
Figure 19-4. Center of gravity envelope chart.
8 e! ], b" m _2 T$ h. V, I) a图19-4 地心引力极限图
; P& G8 H/ {! m3 J# APERFORMANCE SECTION 8 g8 v% L2 g$ D" y" j- I% B5 y
性能部分 t# t6 q1 [$ `# K3 `9 {5 H
The performance section of the flight manual contains data derived from actual flight testing of the aircraft.Because the actual performance may differ, it is prudent to maintain a margin of safety when planning " v$ \8 Z8 U9 e3 G) N# @: r) b8 D
operations using this data. 4 f' e0 K' ~3 Y- V" S
飞行手册的性能部分数据来源于飞行器实际飞行测试。由于每次飞行的性能是不同的,在编写维护及安全操作时要谨慎采用该部分数据。
& N$ T# d w2 r- m3 |; ySAMPLE PROBLEM
- `6 F3 Q9 w6 H. n0 t0 Y样例
' M6 G2 _9 S4 ?! y% |6 [; `0 VFor this example, a gyroplane at its maximum gross weight (1,800 lbs.) needs to perform a short field takeoff due to obstructions in the takeoff path. Present weather conditions are standard temperature at a pressure altitude of 2,000 feet, and the wind is calm. Referring to the appropriate performance chart , `3 |: o* Q' K8 i4 j" }
[Figure19-5], the takeoff distance to clear a 50-foot obstacle is determined by entering the chart from the left at the pressure altitude of 2,000 feet. You then proceed horizontally to the right until intersecting the appropriate / m: R1 Z" M, l% D' e, \
temperature reference line, which in this case is the dashed standard temperature line. From this point,descend vertically to find the total takeoff distance to clear a 50-foot obstacle. For the conditions given, this particular gyroplane would require a distance of 940 feet for ground roll and the distance needed to climb 50 feet above the surface. Notice that the data presented in this chart is predicated on certain conditions, such as a running takeoff to 30 m.p.h., a 50 m.p.h. climb speed, a rotor prerotation speed of 370 r.p.m., and no wind.Variations from these conditions alter performance,possibly to the point of jeopardizing the successful outcome of the maneuver. 1 @3 K1 \# x) `% b
在该例中,一架满载旋翼机(1800磅),需要在短道起飞以躲避跑道上的障碍物。假设在海拔2000英尺高空的温度及压力都是标准情况,无风。根据性能表[图19-5],起飞能否越过50英尺高度的障碍物决定于图表中海拔2000英尺的压力。从压力线水平的划一条与相应温度相交的参考线,这里指的是虚线(标准温度线)。从交点垂直向下就可以查到越过50英尺高的障碍物需要的起飞距离。在给定条件下,旋翼机需要离防护辊距离是940英尺,在这个距离内飞行器需要爬升到50英尺以上。这张图表中的数据是指特定情况下,比如滑跑起飞的爬升速度是30mph、50mph,旋翼的预旋速度为370rpm,无风状态。在不同的情况下飞行器性能有所改变,对其机动性等也会产生相应的影响。
7 ` c$ s/ `& w Y4 [: P) s9 w+ M% [6 b# ~2 L
Figure 19-5. Takeoff performance chart. 9 l3 v L5 {' E8 B
图19-5 起飞性能图表 9 Q# K( a4 _% W8 D* G* t
HEIGHT/VELOCITY DIAGRAM + ]6 N) W! s* t* l( C
海拔/高度表
) e7 W8 D4 p" vLike helicopters, gyroplanes have a height/velocity diagram that defines what speed and altitude combinations allow for a safe landing in the event of an engine failure. [Figure 19-6] During an engine-out landing, the cyclic flare is used to arrest the vertical velocity of the aircraft and most of the forward velocity. On gyroplanes with a manual collective control, increasing blade pitch just prior to touchdown can further reduce ground roll. Typically, a gyroplane has a lower rotor disc loading than a helicopter, which provides a slower rate of descent in autorotation. The power required to turn the main transmission, tail rotor transmission, and tail rotor also add to the higher descent rate of a helicopter in autorotation as compared with that of a gyroplane.
; k' j& T. Z. V9 @9 {3 V3 Q& h- f同直升机一样,旋翼机也有一个高度/速度表详细介绍了在发动机失效的情况下能够安全着陆的高度/速度对照[图19-6]。当发动机失效的情况下,旋转片张开来降低垂直速度和大部分前飞的速度。在旋翼机上有集成控制系统,通过增加桨矩在着陆前最大限度的减少地面滚转。相对来说,旋翼机比直升机的旋翼载荷小,自转下滑速度降低的比较慢。直升机动力系统要驱动主传动系统和尾传动系统,尾传动系统也降低了自动下滑速度。 ( q# _# o& m- i
' `( B% A. J$ {& L; K4 Q& |( |Figure 19-6. Operations within the shaded area of a height/velocity diagram may not allow for a safe landing and are to be avoided. 4 Z' M, q; {% o4 k
图19-6 图中阴影区域的高度/速度无法保证安全着陆 ) B& ]& s' f# K( z6 C
EMERGENCY SECTION
6 c, n4 ?8 J& p/ Y紧急状况部分
& X" ]/ @* i7 GBecause in-flight emergencies may not allow enough time to reference the flight manual, the emergency section should be reviewed periodically to maintain familiarity with these procedures. Many aircraft also use placards and instrument markings in the cockpit, which provide important information that may not be committed to memory.
. z, A" O" R" R; M# C" Y7 S在飞行中紧急状况是没有足够的时间来查阅飞行手册参考处理的,所以紧急状况部分应进行周期性复习熟悉掌握处理对策。大多数飞行器上,驾驶舱张贴布告或者仪器标识,来提供重要的、不便于记忆的紧急状况对策。
, S# K- V6 G7 F/ h$ q3 p: nHANG TEST 4 n# R# ?# Z, [5 C/ z7 |6 {% K0 x. E
悬挂试验
: a5 x$ P5 @2 b( V G1 ~The proper weight and balance of a gyroplane without a flight manual is normally determined by conducting a hang test of the aircraft. This is achieved by removing the rotor blades and suspending the aircraft by its teeter bolt, free from contact with the ground. A measurement is then taken, either at the keel or the rotor
8 o! D" w% W0 H/ [0 ^) Rmast, to determine how many degrees from level the gyroplane hangs. This number must be within the range specified by the manufacturer. For the test to reflect the true balance of the aircraft, it is important that it be conducted using the actual weight of the pilot and all gear normally carried in flight. Additionally, the measurement should be taken both with the fuel tank full and with it empty to ensure that fuel burn does not affect the loading. / I3 M% M0 h0 }) u
旋翼机的载重及平衡标定通常是通过悬挂试验确定的。首先使飞行器旋翼和悬挂通过摇架与地面自由连接。然后在飞行器机身或者桨柱上测量,来确定旋翼机的悬挂水平。这个数据必须在厂商指定的范围内。该测试如实反映了旋翼机平衡性,可以应用在实际飞行中飞行载重及飞行调整。值得注意的是,该试验要在油箱满载及空载的情况下进行,以消除燃油对载重分布状况造成的影响。
/ [- H9 i6 A- U. Y' r; U 6 V% e$ x. _% z: @8 B# t8 B
|